About the Project

Rodrigues formulas

AdvancedHelp

(0.001 seconds)

8 matching pages

1: 18.20 Hahn Class: Explicit Representations
§18.20(i) Rodrigues Formulas
Table 18.20.1: Krawtchouk, Meixner, and Charlier OP’s: Rodrigues formulas (18.20.1).
p n ( x ) F ( x ) κ n
2: 18.5 Explicit Representations
§18.5(ii) Rodrigues Formulas
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
3: 18.3 Definitions
  • 3.

    As given by a Rodrigues formula (18.5.5).

  • For representations of the polynomials in Table 18.3.1 by Rodrigues formulas, see §18.5(ii). …
    4: 14.7 Integer Degree and Order
    §14.7(ii) Rodrigues-Type Formulas
    5: 18.10 Integral Representations
    6: 18.39 Applications in the Physical Sciences
    see Bethe and Salpeter (1957, p. 13), Pauling and Wilson (1985, pp. 130, 131); and noting that this differs from the Rodrigues formula of (18.5.5) for the Laguerre OP’s, in the omission of an n ! in the denominator. …
    7: 18.18 Sums
    §18.18(iv) Connection and Inversion Formulas
    §18.18(v) Linearization Formulas
    Formula (18.18.27) is known as the Hille–Hardy formula. … Formula (18.18.28) is known as the Mehler formula. …
    8: Bibliography W
  • R. Wong (1982) Quadrature formulas for oscillatory integral transforms. Numer. Math. 39 (3), pp. 351–360.