About the Project

Rodrigues formulas

AdvancedHelp

(0.000 seconds)

1—10 of 14 matching pages

1: 18.20 Hahn Class: Explicit Representations
§18.20(i) Rodrigues Formulas
Table 18.20.1: Krawtchouk, Meixner, and Charlier OP’s: Rodrigues formulas (18.20.1).
p n ( x ) F ( x ) κ n
2: 18.5 Explicit Representations
§18.5(ii) Rodrigues Formulas
Table 18.5.1: Classical OP’s: Rodrigues formulas (18.5.5).
p n ( x ) w ( x ) F ( x ) κ n
3: 18.3 Definitions
  • 3.

    As given by a Rodrigues formula (18.5.5).

  • For representations of the polynomials in Table 18.3.1 by Rodrigues formulas, see §18.5(ii). …
    4: 37.14 Orthogonal Polynomials on the Simplex
    37.14.9 U 𝝂 𝜶 ( 𝐱 ) = W 𝜶 ( 𝐱 ) 1 D 𝐱 𝝂 ( 𝐱 𝝂 ( 1 | 𝐱 | ) | 𝝂 | W 𝜶 ( 𝐱 ) ) , 𝝂 0 d , | 𝝂 | = n .
    Formula (37.14.9) is an analogue of the Rodrigues formulas in §18.5(ii). …
    5: 37.6 Plane with Weight Function e x 2 y 2
    Rodrigues Type Formula
    6: 14.7 Integer Degree and Order
    §14.7(ii) Rodrigues-Type Formulas
    7: 37.4 Disk with Weight Function ( 1 x 2 y 2 ) α
    Rodrigues type formula
    The first equality in (37.4.24) is an analogue of the Rodrigues formulas in §18.5(ii). Clearly, …
    8: 37.15 Orthogonal Polynomials on the Ball
    37.15.11 U 𝝂 ( α + 1 2 ) ( 𝐱 ) = W α ( 𝐱 ) 1 D 𝐱 𝝂 ( ( 1 𝐱 2 ) | 𝝂 | W α ( 𝐱 ) ) = ( α + 1 ) | 𝝂 | 𝝁 1 2 𝝂 ( 𝝂 ) 2 𝝁 ( α + 1 ) | 𝝁 | | 𝝁 | ! ( 2 𝐱 ) 𝝂 2 𝝁 ( 𝐱 2 1 ) | 𝝁 | , 𝝂 0 d , | 𝝂 | = n ,
    The first equality in (37.15.11) is an analogue of the Rodrigues formulas in §18.5(ii). …
    9: 18.10 Integral Representations
    10: 37.3 Triangular Region with Weight Function x α y β ( 1 x y ) γ
    37.3.12 U k , n α , β , γ ( x , y ) = x α y β ( 1 x y ) γ n x k y n k [ x k + α y n k + β ( 1 x y ) n + γ ] = ( α + 1 ) k ( β + 1 ) n k ( 1 x y ) n F 2 ( γ n ; k , n + k ; α + 1 , β + 1 ; x x + y 1 , y x + y 1 ) = ( 1 ) n ( γ + 1 ) n x k y n k F 3 ( k , n + k ; α k , β n + k ; γ + 1 ; x + y 1 x , x + y 1 y ) .
    The first expression for U k , n α , β , γ in (37.3.12) is an analogue of the Rodrigues formulas in §18.5(ii). …