About the Project

Riemann%E2%80%93Siegel%20formula

AdvancedHelp

(0.002 seconds)

21—30 of 351 matching pages

21: 8.22 Mathematical Applications
§8.22(ii) Riemann Zeta Function and Incomplete Riemann Zeta Function
See Paris and Cang (1997). If ζ x ( s ) denotes the incomplete Riemann zeta function defined by …so that lim x ζ x ( s ) = ζ ( s ) , then …For further information on ζ x ( s ) , including zeros and uniform asymptotic approximations, see Kölbig (1970, 1972a) and Dunster (2006). …
22: 21.4 Graphics
§21.4 Graphics
Figure 21.4.1 provides surfaces of the scaled Riemann theta function θ ^ ( 𝐳 | 𝛀 ) , with …This Riemann matrix originates from the Riemann surface represented by the algebraic curve μ 3 λ 7 + 2 λ 3 μ = 0 ; compare §21.7(i). … For the scaled Riemann theta functions depicted in Figures 21.4.221.4.5
See accompanying text
Figure 21.4.5: The real part of a genus 3 scaled Riemann theta function: θ ^ ( x + i y , 0 , 0 | 𝛀 2 ) , 0 x 1 , 0 y 3 . … Magnify 3D Help
23: 27.4 Euler Products and Dirichlet Series
The completely multiplicative function f ( n ) = n s gives the Euler product representation of the Riemann zeta function ζ ( s ) 25.2(i)):
27.4.3 ζ ( s ) = n = 1 n s = p ( 1 p s ) 1 , s > 1 .
The Riemann zeta function is the prototype of series of the form …
27.4.5 n = 1 μ ( n ) n s = 1 ζ ( s ) , s > 1 ,
In (27.4.12) and (27.4.13) ζ ( s ) is the derivative of ζ ( s ) .
24: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • J. P. Keating (1999) Periodic Orbits, Spectral Statistics, and the Riemann Zeros. In Supersymmetry and Trace Formulae: Chaos and Disorder, J. P. Keating, D. E. Khmelnitskii, and I. V. Lerner (Eds.), pp. 1–15.
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 25: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • C. de la Vallée Poussin (1896a) Recherches analytiques sur la théorie des nombres premiers. Première partie. La fonction ζ ( s ) de Riemann et les nombres premiers en général, suivi d’un Appendice sur des réflexions applicables à une formule donnée par Riemann. Ann. Soc. Sci. Bruxelles 20, pp. 183–256 (French).
  • B. Deconinck and M. van Hoeij (2001) Computing Riemann matrices of algebraic curves. Phys. D 152/153, pp. 28–46.
  • P. A. Deift (1998) Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach. Courant Lecture Notes in Mathematics, Vol. 3, New York University Courant Institute of Mathematical Sciences, New York.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • 26: Bibliography H
  • P. I. Hadži (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • P. I. Hadži (1976a) Expansions for the probability function in series of Čebyšev polynomials and Bessel functions. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • T. H. Hildebrandt (1938) Definitions of Stieltjes Integrals of the Riemann Type. Amer. Math. Monthly 45 (5), pp. 265–278.
  • 27: 21.5 Modular Transformations
    §21.5(i) Riemann Theta Functions
    Equation (21.5.4) is the modular transformation property for Riemann theta functions. The modular transformations form a group under the composition of such transformations, the modular group, which is generated by simpler transformations, for which ξ ( 𝚪 ) is determinate: …
    §21.5(ii) Riemann Theta Functions with Characteristics
    For explicit results in the case g = 1 , see §20.7(viii).
    28: 25.8 Sums
    §25.8 Sums
    25.8.1 k = 2 ( ζ ( k ) 1 ) = 1 .
    25.8.2 k = 0 Γ ( s + k ) ( k + 1 ) ! ( ζ ( s + k ) 1 ) = Γ ( s 1 ) , s 1 , 0 , 1 , 2 , .
    25.8.9 k = 1 ζ ( 2 k ) ( 2 k + 1 ) 2 2 k = 1 2 1 2 ln 2 .
    25.8.10 k = 1 ζ ( 2 k ) ( 2 k + 1 ) ( 2 k + 2 ) 2 2 k = 1 4 7 4 π 2 ζ ( 3 ) .
    29: Bibliography
  • G. Allasia and R. Besenghi (1989) Numerical Calculation of the Riemann Zeta Function and Generalizations by Means of the Trapezoidal Rule. In Numerical and Applied Mathematics, Part II (Paris, 1988), C. Brezinski (Ed.), IMACS Ann. Comput. Appl. Math., Vol. 1, pp. 467–472.
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.
  • 30: 21.8 Abelian Functions
    §21.8 Abelian Functions
    For every Abelian function, there is a positive integer n , such that the Abelian function can be expressed as a ratio of linear combinations of products with n factors of Riemann theta functions with characteristics that share a common period lattice. …