About the Project
NIST

Ramanujan cubic transformation

AdvancedHelp

(0.001 seconds)

4 matching pages

1: 15.8 Transformations of Variable
Ramanujan’s Cubic Transformation
2: Bibliography C
  • H. H. Chan (1998) On Ramanujan’s cubic transformation formula for F 1 2 ( 1 3 , 2 3 ; 1 ; z ) . Math. Proc. Cambridge Philos. Soc. 124 (2), pp. 193–204.
  • 3: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. N. Watson (1949) A table of Ramanujan’s function τ ( n ) . Proc. London Math. Soc. (2) 51, pp. 1–13.
  • F. J. W. Whipple (1927) Some transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 26 (2), pp. 257–272.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • D. V. Widder (1941) The Laplace Transform. Princeton Mathematical Series, v. 6, Princeton University Press, Princeton, NJ.
  • 4: Bibliography J
  • A. J. Jerri (1982) A note on sampling expansion for a transform with parabolic cylinder kernel. Inform. Sci. 26 (2), pp. 155–158.
  • H. K. Johansen and K. Sørensen (1979) Fast Hankel transforms. Geophysical Prospecting 27 (4), pp. 876–901.
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • G. S. Joyce (1973) On the simple cubic lattice Green function. Philos. Trans. Roy. Soc. London Ser. A 273, pp. 583–610.
  • G. S. Joyce (1994) On the cubic lattice Green functions. Proc. Roy. Soc. London Ser. A 445, pp. 463–477.