About the Project

Ramanujan 1?1 summation

AdvancedHelp

(0.027 seconds)

6 matching pages

1: 17.8 Special Cases of ψ r r Functions
Ramanujan’s ψ 1 1 Summation
Bailey’s Bilateral Summations
2: Bibliography B
  • A. W. Babister (1967) Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations. The Macmillan Co., New York.
  • J. Baik, P. Deift, and K. Johansson (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12 (4), pp. 11191178.
  • Á. Baricz and T. K. Pogány (2013) Integral representations and summations of the modified Struve function. Acta Math. Hungar. 141 (3), pp. 254–281.
  • D. A. Barry, P. J. Culligan-Hensley, and S. J. Barry (1995b) Real values of the W -function. ACM Trans. Math. Software 21 (2), pp. 161171.
  • R. W. Butler and A. T. A. Wood (2002) Laplace approximations for hypergeometric functions with matrix argument. Ann. Statist. 30 (4), pp. 11551177.
  • 3: Bibliography M
  • O. I. Marichev (1983) Handbook of Integral Transforms of Higher Transcendental Functions: Theory and Algorithmic Tables. Ellis Horwood Ltd./John Wiley & Sons, Inc, Chichester/New York.
  • G. Matviyenko (1993) On the evaluation of Bessel functions. Appl. Comput. Harmon. Anal. 1 (1), pp. 116–135.
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ( arg w μ ) e ν z w sinh z 𝑑 z , ( π 2 < μ < π 2 ) für große Werte von | w | und | ν | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 11701180, 1291–1303 (German).
  • R. Metzler, J. Klafter, and J. Jortner (1999) Hierarchies and logarithmic oscillations in the temporal relaxation patterns of proteins and other complex systems. Proc. Nat. Acad. Sci. U .S. A. 96 (20), pp. 1108511089.
  • L. J. Mordell (1917) On the representation of numbers as a sum of 2 r squares. Quarterly Journal of Math. 48, pp. 93–104.
  • 4: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 11031106.
  • A. Apelblat (1983) Table of Definite and Infinite Integrals. Physical Sciences Data, Vol. 13, Elsevier Scientific Publishing Co., Amsterdam.
  • A. Apelblat (1989) Derivatives and integrals with respect to the order of the Struve functions 𝐇 ν ( x ) and 𝐋 ν ( x ) . J. Math. Anal. Appl. 137 (1), pp. 17–36.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • M. Aymar, C. H. Greene, and E. Luc-Koenig (1996) Multichannel Rydberg spectroscopy of complex atoms. Reviews of Modern Physics 68, pp. 10151123.
  • 5: Bibliography W
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114118.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. N. Watson (1944) A Treatise on the Theory of Bessel Functions. 2nd edition, Cambridge University Press, Cambridge, England.
  • J. A. Wheeler (1937) Wave functions for large arguments by the amplitude-phase method. Phys. Rev. 52, pp. 11231127.
  • G. Wolf (2008) On the asymptotic behavior of the Fourier coefficients of Mathieu functions. J. Res. Nat. Inst. Standards Tech. 113 (1), pp. 11–15.
  • 6: Bibliography C
  • T. S. Chihara and M. E. H. Ismail (1993) Extremal measures for a system of orthogonal polynomials. Constr. Approx. 9, pp. 111119.
  • R. C. Y. Chin and G. W. Hedstrom (1978) A dispersion analysis for difference schemes: Tables of generalized Airy functions. Math. Comp. 32 (144), pp. 11631170.
  • J. N. L. Connor and P. R. Curtis (1982) A method for the numerical evaluation of the oscillatory integrals associated with the cuspoid catastrophes: Application to Pearcey’s integral and its derivatives. J. Phys. A 15 (4), pp. 11791190.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral. Proc. Glasgow Math. Assoc. 6, pp. 113115.
  • C. M. Cosgrove (2006) Chazy’s second-degree Painlevé equations. J. Phys. A 39 (39), pp. 1195511971.