N�rlund polynomials
(0.003 seconds)
1—10 of 37 matching pages
1: 18.21 Hahn Class: Interrelations
2: 18.19 Hahn Class: Definitions
…
►Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials
, Krawtchouk polynomials
, Meixner polynomials
, and Charlier polynomials
.
►
Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight functions, standardizations, and parameter constraints.
►
►
►
►
…
Hahn | , | , or | If , then and . | |
---|---|---|---|---|
Krawtchouk | , | , | ||
… |
3: 18.22 Hahn Class: Recurrence Relations and Differences
4: 18.26 Wilson Class: Continued
5: 18.20 Hahn Class: Explicit Representations
6: 18.25 Wilson Class: Definitions
…
►Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials
, continuous dual Hahn polynomials
, Racah polynomials
, and dual Hahn polynomials
.
►
Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
►
►
►
…
►
OP | Orthogonality range for | Constraints | ||
---|---|---|---|---|
… | ||||
dual Hahn | or |
18.25.10
,
…
►
18.25.13
…
►
18.25.15
…
7: 18.23 Hahn Class: Generating Functions
8: 19.19 Taylor and Related Series
…
►For define the homogeneous hypergeometric polynomial
►
19.19.1
…
►
19.19.2
, ,
…
►
19.19.5
…
►
19.19.7
…
9: 18.1 Notation
10: 18.3 Definitions
…
►In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials
, , are orthogonal on the discrete point set comprising the zeros , of :
►
18.3.1
, , ,
…
►For and a finite system of Jacobi polynomials
(called pseudo Jacobi polynomials or Routh–Romanovski polynomials) is orthogonal on with .
…