About the Project

N�rlund polynomials

AdvancedHelp

(0.003 seconds)

1—10 of 37 matching pages

1: 18.21 Hahn Class: Interrelations
K n ( x ; p , N ) = K x ( n ; p , N ) , n , x = 0 , 1 , , N .
18.21.3 lim t Q n ( x ; p t , ( 1 p ) t , N ) = K n ( x ; p , N ) .
18.21.4 lim N Q n ( x ; β 1 , N ( c 1 1 ) , N ) = M n ( x ; β , c ) .
18.21.5 lim N Q n ( N x ; α , β , N ) = P n ( α , β ) ( 1 2 x ) P n ( α , β ) ( 1 ) .
18.21.6 lim N K n ( x ; N 1 a , N ) = C n ( x ; a ) .
2: 18.19 Hahn Class: Definitions
Tables 18.19.1 and 18.19.2 provide definitions via orthogonality and standardization (§§18.2(i), 18.2(iii)) for the Hahn polynomials Q n ( x ; α , β , N ) , Krawtchouk polynomials K n ( x ; p , N ) , Meixner polynomials M n ( x ; β , c ) , and Charlier polynomials C n ( x ; a ) .
Table 18.19.1: Orthogonality properties for Hahn, Krawtchouk, Meixner, and Charlier OP’s: discrete sets, weight functions, standardizations, and parameter constraints.
p n ( x ) X w x h n
Hahn Q n ( x ; α , β , N ) , n = 0 , 1 , , N { 0 , 1 , , N } ( α + 1 ) x ( β + 1 ) N x x ! ( N x ) ! , α , β > 1  or  α , β < N ( 1 ) n ( n + α + β + 1 ) N + 1 ( β + 1 ) n n ! ( 2 n + α + β + 1 ) ( α + 1 ) n ( N ) n N ! If α , β < N , then ( 1 ) N w x > 0 and ( 1 ) N h n > 0 .
Krawtchouk K n ( x ; p , N ) , n = 0 , 1 , , N { 0 , 1 , , N } ( N x ) p x ( 1 p ) N x , 0 < p < 1 ( 1 p p ) n / ( N n )
Table 18.19.2: Hahn, Krawtchouk, Meixner, and Charlier OP’s: leading coefficients.
p n ( x ) k n
Q n ( x ; α , β , N ) ( n + α + β + 1 ) n ( α + 1 ) n ( N ) n
K n ( x ; p , N ) p n / ( N ) n
3: 18.22 Hahn Class: Recurrence Relations and Differences
18.22.1 p n ( x ) = Q n ( x ; α , β , N ) ,
18.22.19 Δ x Q n ( x ; α , β , N ) = n ( n + α + β + 1 ) ( α + 1 ) N Q n 1 ( x ; α + 1 , β + 1 , N 1 ) ,
18.22.21 Δ x K n ( x ; p , N ) = n p N K n 1 ( x ; p , N 1 ) ,
18.22.22 x ( ( N x ) p x ( 1 p ) N x K n ( x ; p , N ) ) = ( N + 1 x ) p x ( 1 p ) N x K n + 1 ( x ; p , N + 1 ) .
4: 18.26 Wilson Class: Continued
18.26.4_1 R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) = Q y ( n ; γ , δ , N ) ,
18.26.9 lim β R n ( x ; N 1 , β , γ , δ ) = R n ( x ; γ , δ , N ) .
18.26.10 lim δ R n ( x ( x + γ + δ + 1 ) ; α , β , N 1 , δ ) = Q n ( x ; α , β , N ) .
18.26.11 lim t R n ( x ( x + t + 1 ) ; p t , ( 1 p ) t , N ) = K n ( x ; p , N ) .
18.26.13 lim N R n ( r ( x ; β , c , N ) ; β 1 , c 1 ( 1 c ) N , N ) = M n ( x ; β , c ) .
5: 18.20 Hahn Class: Explicit Representations
For the Hahn polynomials p n ( x ) = Q n ( x ; α , β , N ) and …
Table 18.20.1: Krawtchouk, Meixner, and Charlier OP’s: Rodrigues formulas (18.20.1).
p n ( x ) F ( x ) κ n
K n ( x ; p , N ) x N ( N ) n
18.20.6 K n ( x ; p , N ) = F 1 2 ( n , x N ; p 1 ) , n = 0 , 1 , , N .
6: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) .
Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
OP p n ( x ) x = λ ( y ) Orthogonality range for y Constraints
dual Hahn R n ( x ; γ , δ , N ) y ( y + γ + δ + 1 ) { 0 , 1 , , N } γ , δ > 1 or < N
18.25.15 h n = n ! ( N n ) ! ( γ + δ + 2 ) N N ! ( γ + 1 ) n ( δ + 1 ) N n .
7: 18.23 Hahn Class: Generating Functions
18.23.1 F 1 1 ( x α + 1 ; z ) F 1 1 ( x N β + 1 ; z ) = n = 0 N ( N ) n ( β + 1 ) n n ! Q n ( x ; α , β , N ) z n , x = 0 , 1 , , N .
18.23.3 ( 1 1 p p z ) x ( 1 + z ) N x = n = 0 N ( N n ) K n ( x ; p , N ) z n , x = 0 , 1 , , N .
8: 19.19 Taylor and Related Series
For N = 0 , 1 , 2 , define the homogeneous hypergeometric polynomial
19.19.1 T N ( 𝐛 , 𝐳 ) = ( b 1 ) m 1 ( b n ) m n m 1 ! m n ! z 1 m 1 z n m n ,
19.19.2 R a ( 𝐛 ; 𝐳 ) = N = 0 ( a ) N ( c ) N T N ( 𝐛 , 𝟏 𝐳 ) , c = j = 1 n b j , | 1 z j | < 1 ,
19.19.5 T N ( 𝟏 𝟐 , 𝐳 ) = ( 1 ) M + N ( 1 2 ) M E 1 m 1 ( 𝐳 ) E n m n ( 𝐳 ) m 1 ! m n ! ,
9: 18.1 Notation
  • Hahn: Q n ( x ; α , β , N ) .

  • Krawtchouk: K n ( x ; p , N ) .

  • q -Hahn: Q n ( x ; α , β , N ; q ) .

  • 10: 18.3 Definitions
    In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) :
    18.3.1 n = 1 N + 1 T j ( x N + 1 , n ) T k ( x N + 1 , n ) = 0 , 0 j N , 0 k N , j k ,
    For ν and N > 1 2 a finite system of Jacobi polynomials P n ( N 1 + i ν , N 1 i ν ) ( i x ) (called pseudo Jacobi polynomials or Routh–Romanovski polynomials) is orthogonal on ( , ) with w ( x ) = ( 1 + x 2 ) N 1 e 2 ν arctan x . …