About the Project

Legendre

AdvancedHelp

(0.001 seconds)

11—20 of 168 matching pages

11: 14.4 Graphics
§14.4(iii) Associated Legendre Functions: 2D Graphs
See accompanying text
Figure 14.4.24: 𝑸 0 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
See accompanying text
Figure 14.4.28: 𝑸 1 μ ( x ) , μ = 0 , 2 , 4 , 8 . Magnify
§14.4(iv) Associated Legendre Functions: 3D Surfaces
See accompanying text
Figure 14.4.32: 𝑸 0 μ ( x ) , 0 μ 10 , 1 < x < 10 . Magnify 3D Help
12: 14.2 Differential Equations
§14.2(i) Legendre’s Equation
Standard solutions: 𝖯 ν ( ± x ) , 𝖰 ν ( ± x ) , 𝖰 ν 1 ( ± x ) , P ν ( ± x ) , Q ν ( ± x ) , Q ν 1 ( ± x ) . …
§14.2(ii) Associated Legendre Equation
Ferrers functions and the associated Legendre functions are related to the Legendre functions by the equations 𝖯 ν 0 ( x ) = 𝖯 ν ( x ) , 𝖰 ν 0 ( x ) = 𝖰 ν ( x ) , P ν 0 ( x ) = P ν ( x ) , Q ν 0 ( x ) = Q ν ( x ) , 𝑸 ν 0 ( x ) = 𝑸 ν ( x ) = Q ν ( x ) / Γ ( ν + 1 ) . …
§14.2(iii) Numerically Satisfactory Solutions
13: 14.9 Connection Formulas
§14.9(i) Connections Between 𝖯 ν ± μ ( x ) , 𝖯 ν 1 ± μ ( x ) , 𝖰 ν ± μ ( x ) , 𝖰 ν 1 μ ( x )
𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
§14.9(ii) Connections Between 𝖯 ν ± μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν μ ( x )
§14.9(iii) Connections Between P ν ± μ ( x ) , P ν 1 ± μ ( x ) , 𝑸 ν ± μ ( x ) , 𝑸 ν 1 μ ( x )
§14.9(iv) Whipple’s Formula
14: 14.10 Recurrence Relations and Derivatives
§14.10 Recurrence Relations and Derivatives
𝖰 ν μ ( x ) also satisfies (14.10.1)–(14.10.5).
14.10.6 P ν μ + 2 ( x ) + 2 ( μ + 1 ) x ( x 2 1 ) 1 / 2 P ν μ + 1 ( x ) ( ν μ ) ( ν + μ + 1 ) P ν μ ( x ) = 0 ,
Q ν μ ( x ) also satisfies (14.10.6) and (14.10.7). In addition, P ν μ ( x ) and Q ν μ ( x ) satisfy (14.10.3)–(14.10.5).
15: 14.22 Graphics
§14.22 Graphics
See accompanying text
Figure 14.22.1: P 1 / 2 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.2: P 1 / 2 1 / 2 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
See accompanying text
Figure 14.22.4: 𝑸 0 0 ( x + i y ) , 5 x 5 , 5 y 5 . … Magnify 3D Help
16: 14.28 Sums
§14.28 Sums
§14.28(i) Addition Theorem
14.28.1 P ν ( z 1 z 2 ( z 1 2 1 ) 1 / 2 ( z 2 2 1 ) 1 / 2 cos ϕ ) = P ν ( z 1 ) P ν ( z 2 ) + 2 m = 1 ( 1 ) m Γ ( ν m + 1 ) Γ ( ν + m + 1 ) P ν m ( z 1 ) P ν m ( z 2 ) cos ( m ϕ ) ,
§14.28(ii) Heine’s Formula
14.28.2 n = 0 ( 2 n + 1 ) Q n ( z 1 ) P n ( z 2 ) = 1 z 1 z 2 , z 1 1 , z 2 2 ,
17: 14.33 Tables
§14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 18: 14.24 Analytic Continuation
    §14.24 Analytic Continuation
    Let s be an arbitrary integer, and P ν μ ( z e s π i ) and 𝑸 ν μ ( z e s π i ) denote the branches obtained from the principal branches by making 1 2 s circuits, in the positive sense, of the ellipse having ± 1 as foci and passing through z . … Next, let P ν , s μ ( z ) and 𝑸 ν , s μ ( z ) denote the branches obtained from the principal branches by encircling the branch point 1 (but not the branch point 1 ) s times in the positive sense. … For fixed z , other than ± 1 or , each branch of P ν μ ( z ) and 𝑸 ν μ ( z ) is an entire function of each parameter ν and μ . The behavior of P ν μ ( z ) and 𝑸 ν μ ( z ) as z 1 from the left on the upper or lower side of the cut from to 1 can be deduced from (14.8.7)–(14.8.11), combined with (14.24.1) and (14.24.2) with s = ± 1 .
    19: 14.5 Special Values
    §14.5(v) μ = 0 , ν = ± 1 2
    14.5.28 𝖯 2 ( x ) = P 2 ( x ) = 3 x 2 1 2 ,
    20: 14.17 Integrals
    In (14.17.1)–(14.17.4), 𝖯 may be replaced by 𝖰 , and in (14.17.3) and (14.17.4), 𝖰 may be replaced by 𝖯 . …
    §14.17(iii) Orthogonality Properties
    Orthogonality relations for the associated Legendre functions of imaginary order are given in Bielski (2013).
    §14.17(iv) Definite Integrals of Products
    §14.17(v) Laplace Transforms