About the Project

Lax%20pair

AdvancedHelp

(0.001 seconds)

21—30 of 170 matching pages

21: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 22: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    23: 10.25 Definitions
    §10.25(iii) Numerically Satisfactory Pairs of Solutions
    Table 10.25.1 lists numerically satisfactory pairs of solutions (§2.7(iv)) of (10.25.1). …
    Table 10.25.1: Numerically satisfactory pairs of solutions of the modified Bessel’s equation.
    Pair Region
    24: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • L. Lorch (2002) Comparison of a pair of upper bounds for a ratio of gamma functions. Math. Balkanica (N.S.) 16 (1-4), pp. 195–202.
  • 25: 27.5 Inversion Formulas
    27.5.3 g ( n ) = d | n f ( d ) f ( n ) = d | n g ( d ) μ ( n d ) .
    Special cases of Möbius inversion pairs are: …
    26: 27.19 Methods of Computation: Factorization
    Type II probabilistic algorithms for factoring n rely on finding a pseudo-random pair of integers ( x , y ) that satisfy x 2 y 2 ( mod n ) . …
    27: 6.19 Tables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 28: Peter L. Walker
    29: Staff
  • William P. Reinhardt, University of Washington, Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, Chaps. 20, 22, 23

  • William P. Reinhardt, University of Washington, for Chaps. 20, 22, 23

  • Peter L. Walker, American University of Sharjah, for Chaps. 20, 22, 23

  • 30: 15.10 Hypergeometric Differential Equation
    It has regular singularities at z = 0 , 1 , , with corresponding exponent pairs { 0 , 1 c } , { 0 , c a b } , { a , b } , respectively. When none of the exponent pairs differ by an integer, that is, when none of c , c a b , a b is an integer, we have the following pairs f 1 ( z ) , f 2 ( z ) of fundamental solutions. … The three pairs of fundamental solutions given by (15.10.2), (15.10.4), and (15.10.6) can be transformed into 18 other solutions by means of (15.8.1), leading to a total of 24 solutions known as Kummer’s solutions. … The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …