About the Project

Japan Airlines Reservation Number %F0%9F%93%9E850.308.3021%F0%9F%93%9E

AdvancedHelp

(0.006 seconds)

21—30 of 512 matching pages

21: 24.14 Sums
§24.14 Sums
§24.14(i) Quadratic Recurrence Relations
24.14.6 k = 0 n ( n k ) 2 k B k E n k = 2 ( 1 2 n 1 ) B n n E n 1 .
§24.14(ii) Higher-Order Recurrence Relations
For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
22: 27.9 Quadratic Characters
§27.9 Quadratic Characters
For an odd prime p , the Legendre symbol ( n | p ) is defined as follows. …
27.9.2 ( 2 | p ) = ( 1 ) ( p 2 1 ) / 8 .
If p , q are distinct odd primes, then the quadratic reciprocity law states that … If an odd integer P has prime factorization P = r = 1 ν ( n ) p r a r , then the Jacobi symbol ( n | P ) is defined by ( n | P ) = r = 1 ν ( n ) ( n | p r ) a r , with ( n | 1 ) = 1 . …
23: 24.5 Recurrence Relations
§24.5 Recurrence Relations
24.5.4 k = 0 n ( 2 n 2 k ) E 2 k = 0 , n = 1 , 2 , ,
24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
§24.5(ii) Other Identities
§24.5(iii) Inversion Formulas
24: Bibliography
  • A. Adelberg (1996) Congruences of p -adic integer order Bernoulli numbers. J. Number Theory 59 (2), pp. 374–388.
  • H. Alzer (2000) Sharp bounds for the Bernoulli numbers. Arch. Math. (Basel) 74 (3), pp. 207–211.
  • T. M. Apostol and I. Niven (1994) Number Theory. In The New Encyclopaedia Britannica, Vol. 25, pp. 14–37.
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • 25: 24.2 Definitions and Generating Functions
    §24.2 Definitions and Generating Functions
    §24.2(i) Bernoulli Numbers and Polynomials
    §24.2(ii) Euler Numbers and Polynomials
    Table 24.2.1: Bernoulli and Euler numbers.
    n B n E n
    Table 24.2.4: Euler numbers E n .
    n E n
    26: 24.6 Explicit Formulas
    §24.6 Explicit Formulas
    24.6.4 E 2 n = k = 1 n 1 2 k 1 j = 1 k ( 1 ) j ( 2 k k j ) j 2 n ,
    24.6.5 E 2 n = 1 2 n 1 k = 0 n 1 ( 1 ) n k ( n k ) 2 n j = 0 k ( 2 n 2 j k j ) 2 j ,
    24.6.10 E n = 1 2 n k = 1 n + 1 ( n + 1 k ) j = 0 k 1 ( 1 ) j ( 2 j + 1 ) n .
    24.6.12 E 2 n = k = 0 2 n 1 2 k j = 0 k ( 1 ) j ( k j ) ( 1 + 2 j ) 2 n .
    27: 27.5 Inversion Formulas
    §27.5 Inversion Formulas
    Generating functions yield many relations connecting number-theoretic functions. … Special cases of Möbius inversion pairs are: … Other types of Möbius inversion formulas include: …
    28: Bibliography T
  • J. W. Tanner and S. S. Wagstaff (1987) New congruences for the Bernoulli numbers. Math. Comp. 48 (177), pp. 341–350.
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • P. G. Todorov (1991) Explicit formulas for the Bernoulli and Euler polynomials and numbers. Abh. Math. Sem. Univ. Hamburg 61, pp. 175–180.
  • P. G. Todorov (1984) On the theory of the Bernoulli polynomials and numbers. J. Math. Anal. Appl. 104 (2), pp. 309–350.
  • A. A. Tuẑilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 29: 24.21 Software
    §24.21(ii) B n , B n ( x ) , E n , and E n ( x )
    30: 26.9 Integer Partitions: Restricted Number and Part Size
    §26.9 Integer Partitions: Restricted Number and Part Size
    p k ( n ) denotes the number of partitions of n into at most k parts. See Table 26.9.1. … It follows that p k ( n ) also equals the number of partitions of n into parts that are less than or equal to k . …