About the Project

Jacobian elliptic functions

AdvancedHelp

(0.010 seconds)

21—30 of 55 matching pages

21: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
Jacobian elliptic functions arise as solutions to certain nonlinear Schrödinger equations, which model many types of wave propagation phenomena. …
22: Peter L. Walker
23: 22.20 Methods of Computation
§22.20 Methods of Computation
§22.20(iii) Landen Transformations
§22.20(iv) Lattice Calculations
§22.20(v) Inverse Functions
24: 22.9 Cyclic Identities
§22.9 Cyclic Identities
§22.9(i) Notation
25: 29.18 Mathematical Applications
29.18.6 d 2 u 2 d β 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( β , k ) ) u 2 = 0 ,
29.18.7 d 2 u 3 d γ 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( γ , k ) ) u 3 = 0 ,
26: Bille C. Carlson
In Symmetry in c, d, n of Jacobian elliptic functions (2004) he found a previously hidden symmetry in relations between Jacobian elliptic functions, which can now take a form that remains valid when the letters c, d, and n are permuted. This invariance usually replaces sets of twelve equations by sets of three equations and applies also to the relation between the first symmetric elliptic integral and the Jacobian functions. …
27: 29.11 Lamé Wave Equation
29.11.1 d 2 w d z 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( z , k ) + k 2 ω 2 sn 4 ( z , k ) ) w = 0 ,
28: 19.10 Relations to Other Functions
§19.10(i) Theta and Elliptic Functions
29: 29.15 Fourier Series and Chebyshev Series
30: William P. Reinhardt