About the Project

Jacobi%20triple%20product

AdvancedHelp

(0.002 seconds)

21—30 of 333 matching pages

21: 8 Incomplete Gamma and Related
Functions
22: 28 Mathieu Functions and Hill’s Equation
23: 18.1 Notation
Classical OP’s
  • Jacobi: P n ( α , β ) ( x ) .

  • Big q -Jacobi: P n ( x ; a , b , c ; q ) .

  • Little q -Jacobi: p n ( x ; a , b ; q ) .

  • Nor do we consider the shifted Jacobi polynomials: …
    24: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • S. V. Aksenov, M. A. Savageau, U. D. Jentschura, J. Becher, G. Soff, and P. J. Mohr (2003) Application of the combined nonlinear-condensation transformation to problems in statistical analysis and theoretical physics. Comput. Phys. Comm. 150 (1), pp. 1–20.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • R. Askey and B. Razban (1972) An integral for Jacobi polynomials. Simon Stevin 46, pp. 165–169.
  • 25: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 26: 23 Weierstrass Elliptic and Modular
    Functions
    27: 22.21 Tables
    §22.21 Tables
    Spenceley and Spenceley (1947) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) , am ( K x , k ) , ( K x , k ) for arcsin k = 1 ( 1 ) 89 and x = 0 ( 1 90 ) 1 to 12D, or 12 decimals of a radian in the case of am ( K x , k ) . … Lawden (1989, pp. 280–284 and 293–297) tabulates sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , ( x , k ) , Z ( x | k ) to 5D for k = 0.1 ( .1 ) 0.9 , x = 0 ( .1 ) X , where X ranges from 1. … Zhang and Jin (1996, p. 678) tabulates sn ( K x , k ) , cn ( K x , k ) , dn ( K x , k ) for k = 1 4 , 1 2 and x = 0 ( .1 ) 4 to 7D. …
    28: 18.5 Explicit Representations
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    Jacobi
    For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … The first of each of equations (18.5.7) and (18.5.8) can be regarded as definitions of P n ( α , β ) ( x ) when the conditions α > 1 and β > 1 are not satisfied. …For this reason, and also in the interest of simplicity, in the case of the Jacobi polynomials P n ( α , β ) ( x ) we assume throughout this chapter that α > 1 and β > 1 , unless stated otherwise. …
    29: 27.1 Special Notation
    d , k , m , n positive integers (unless otherwise indicated).
    d | n , d | n sum, product taken over divisors of n .
    p , p sum, product extended over all primes.
    ( n | P ) Jacobi symbol; see §27.9.
    30: 17.8 Special Cases of ψ r r Functions
    Jacobi’s Triple Product
    Quintuple Product Identity