About the Project

Coulomb%20phase%20shift

AdvancedHelp

(0.002 seconds)

11—20 of 385 matching pages

11: 33.6 Power-Series Expansions in ρ
§33.6 Power-Series Expansions in ρ
33.6.1 F ( η , ρ ) = C ( η ) k = + 1 A k ( η ) ρ k ,
33.6.2 F ( η , ρ ) = C ( η ) k = + 1 k A k ( η ) ρ k 1 ,
33.6.5 H ± ( η , ρ ) = e ± i θ ( η , ρ ) ( 2 + 1 ) ! Γ ( ± i η ) ( k = 0 ( a ) k ( 2 + 2 ) k k ! ( 2 i ρ ) a + k ( ln ( 2 i ρ ) + ψ ( a + k ) ψ ( 1 + k ) ψ ( 2 + 2 + k ) ) k = 1 2 + 1 ( 2 + 1 ) ! ( k 1 ) ! ( 2 + 1 k ) ! ( 1 a ) k ( 2 i ρ ) a k ) ,
Corresponding expansions for H ± ( η , ρ ) can be obtained by combining (33.6.5) with (33.4.3) or (33.4.4).
12: 20 Theta Functions
Chapter 20 Theta Functions
13: 33.17 Recurrence Relations and Derivatives
§33.17 Recurrence Relations and Derivatives
33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
14: 33.15 Graphics
§33.15 Graphics
§33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
See accompanying text
Figure 33.15.1: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 0 , ϵ = 4 . Magnify
§33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
See accompanying text
Figure 33.15.9: h ( ϵ , ; r ) with = 1 , 2 < ϵ < 2 , 15 < r < 15 . Magnify 3D Help
15: 18.39 Applications in the Physical Sciences
The Quantum Coulomb Problem
This is Coulomb’s Law. … Derivations of (18.39.42) appear in Bethe and Salpeter (1957, pp. 12–20), and Pauling and Wilson (1985, Chapter V and Appendix VII), where the derivations are based on (18.39.36), and is also the notation of Piela (2014, §4.7), typifying the common use of the associated Coulomb–Laguerre polynomials in theoretical quantum chemistry. …
The Relativistic Quantum Coulomb Problem
The Coulomb–Pollaczek Polynomials
16: 33.18 Limiting Forms for Large
§33.18 Limiting Forms for Large
f ( ϵ , ; r ) ( 2 r ) + 1 ( 2 + 1 ) ! ,
h ( ϵ , ; r ) ( 2 ) ! π ( 2 r ) .
17: Bibliography C
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • C. W. Clark (1979) Coulomb phase shift. American Journal of Physics 47 (8), pp. 683–684.
  • W. J. Cody and K. E. Hillstrom (1970) Chebyshev approximations for the Coulomb phase shift. Math. Comp. 24 (111), pp. 671–677.
  • M. Colman, A. Cuyt, and J. Van Deun (2011) Validated computation of certain hypergeometric functions. ACM Trans. Math. Software 38 (2), pp. Art. 11, 20.
  • M. D. Cooper, R. H. Jeppesen, and M. B. Johnson (1979) Coulomb effects in the Klein-Gordon equation for pions. Phys. Rev. C 20 (2), pp. 696–704.
  • 18: 33.1 Special Notation
    The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
  • Curtis (1964a):

    P ( ϵ , r ) = ( 2 + 1 ) ! f ( ϵ , ; r ) / 2 + 1 , Q ( ϵ , r ) = ( 2 + 1 ) ! h ( ϵ , ; r ) / ( 2 + 1 A ( ϵ , ) ) .

  • Greene et al. (1979):

    f ( 0 ) ( ϵ , ; r ) = f ( ϵ , ; r ) , f ( ϵ , ; r ) = s ( ϵ , ; r ) , g ( ϵ , ; r ) = c ( ϵ , ; r ) .

  • 19: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • 20: 33.14 Definitions and Basic Properties
    §33.14(i) Coulomb Wave Equation
    §33.14(ii) Regular Solution f ( ϵ , ; r )
    §33.14(iii) Irregular Solution h ( ϵ , ; r )
    §33.14(iv) Solutions s ( ϵ , ; r ) and c ( ϵ , ; r )
    §33.14(v) Wronskians