About the Project

Coulomb excitation of nuclei

AdvancedHelp

(0.001 seconds)

1—10 of 62 matching pages

1: 33.22 Particle Scattering and Atomic and Molecular Spectra
§33.22(i) Schrödinger Equation
Attractive potentials: Z 1 Z 2 < 0 , η < 0 .
Positive-energy functions correspond to processes such as Rutherford scattering and Coulomb excitation of nuclei (Alder et al. (1956)), and atomic photo-ionization and electron-ion collisions (Bethe and Salpeter (1977)). …
§33.22(iv) Klein–Gordon and Dirac Equations
2: Bibliography B
  • E. Bank and M. E. H. Ismail (1985) The attractive Coulomb potential polynomials. Constr. Approx. 1 (2), pp. 103–119.
  • A. R. Barnett (1981a) An algorithm for regular and irregular Coulomb and Bessel functions of real order to machine accuracy. Comput. Phys. Comm. 21 (3), pp. 297–314.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • E. Berti and V. Cardoso (2006) Quasinormal ringing of Kerr black holes: The excitation factors. Phys. Rev. D 74 (104020), pp. 1–27.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1951) Coulomb functions for reactions of protons and alpha-particles with the lighter nuclei. Rev. Modern Physics 23 (2), pp. 147–182.
  • 3: 33.17 Recurrence Relations and Derivatives
    §33.17 Recurrence Relations and Derivatives
    33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
    33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
    33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
    33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
    4: 33.15 Graphics
    §33.15 Graphics
    §33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
    See accompanying text
    Figure 33.15.1: f ( ϵ , ; r ) , h ( ϵ , ; r ) with = 0 , ϵ = 4 . Magnify
    §33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
    See accompanying text
    Figure 33.15.9: h ( ϵ , ; r ) with = 1 , 2 < ϵ < 2 , 15 < r < 15 . Magnify 3D Help
    5: 33.2 Definitions and Basic Properties
    §33.2(i) Coulomb Wave Equation
    The functions H ± ( η , ρ ) are defined by … σ ( η ) is the Coulomb phase shift. …
    §33.2(iv) Wronskians and Cross-Product
    6: 33.3 Graphics
    §33.3 Graphics
    §33.3(i) Line Graphs of the Coulomb Radial Functions F ( η , ρ ) and G ( η , ρ )
    See accompanying text
    Figure 33.3.3: F ( η , ρ ) , G ( η , ρ ) with = 0 , η = 2 . The turning point is at ρ tp ( 2 , 0 ) = 4 . Magnify
    §33.3(ii) Surfaces of the Coulomb Radial Functions F 0 ( η , ρ ) and G 0 ( η , ρ )
    See accompanying text
    Figure 33.3.8: G 0 ( η , ρ ) , 2 η 2 , 0 < ρ 5 . Magnify 3D Help
    7: 33.18 Limiting Forms for Large
    §33.18 Limiting Forms for Large
    f ( ϵ , ; r ) ( 2 r ) + 1 ( 2 + 1 ) ! ,
    h ( ϵ , ; r ) ( 2 ) ! π ( 2 r ) .
    8: 33.24 Tables
    §33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 9: 18.39 Applications in the Physical Sciences
    The Quantum Coulomb Problem
    This is Coulomb’s Law. …
    c) Spherical Radial Coulomb Wave Functions
    The Relativistic Quantum Coulomb Problem
    The Coulomb–Pollaczek Polynomials
    10: 33.1 Special Notation
    The main functions treated in this chapter are first the Coulomb radial functions F ( η , ρ ) , G ( η , ρ ) , H ± ( η , ρ ) (Sommerfeld (1928)), which are used in the case of repulsive Coulomb interactions, and secondly the functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , c ( ϵ , ; r ) (Seaton (1982, 2002a)), which are used in the case of attractive Coulomb interactions. …
  • Curtis (1964a):

    P ( ϵ , r ) = ( 2 + 1 ) ! f ( ϵ , ; r ) / 2 + 1 , Q ( ϵ , r ) = ( 2 + 1 ) ! h ( ϵ , ; r ) / ( 2 + 1 A ( ϵ , ) ) .

  • Greene et al. (1979):

    f ( 0 ) ( ϵ , ; r ) = f ( ϵ , ; r ) , f ( ϵ , ; r ) = s ( ϵ , ; r ) , g ( ϵ , ; r ) = c ( ϵ , ; r ) .