About the Project

Chebyshev

AdvancedHelp

(0.001 seconds)

21—30 of 52 matching pages

21: 18.13 Continued Fractions
Chebyshev
T n ( x ) is the denominator of the n th approximant to: …and U n ( x ) is the denominator of the n th approximant to: …
22: 18.4 Graphics
See accompanying text
Figure 18.4.3: Chebyshev polynomials T n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
23: 18.8 Differential Equations
Table 18.8.1: Classical OP’s: differential equations A ( x ) f ′′ ( x ) + B ( x ) f ( x ) + C ( x ) f ( x ) + λ n f ( x ) = 0 .
# f ( x ) A ( x ) B ( x ) C ( x ) λ n
5 T n ( x ) 1 x 2 x 0 n 2
6 U n ( x ) 1 x 2 3 x 0 n ( n + 2 )
24: 13.31 Approximations
§13.31(i) Chebyshev-Series Expansions
Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. …
25: 18.12 Generating Functions
The z -radii of convergence will depend on x , and in first instance we will assume x [ 1 , 1 ] for Jacobi, ultraspherical, Chebyshev and Legendre, x [ 0 , ) for Laguerre, and x for Hermite. …
Chebyshev
18.12.7 1 z 2 1 2 x z + z 2 = 1 + 2 n = 1 T n ( x ) z n , | z | < 1 .
18.12.8 1 x z 1 2 x z + z 2 = n = 0 T n ( x ) z n , | z | < 1 .
18.12.9 ln ( 1 2 x z + z 2 ) = 2 n = 1 T n ( x ) n z n , | z | < 1 .
26: 18.18 Sums
Chebyshev
Chebyshev
18.18.21 T m ( x ) T n ( x ) = 1 2 ( T m + n ( x ) + T m n ( x ) ) .
Chebyshev
Legendre and Chebyshev
27: 19.38 Approximations
Cody (1965b) gives Chebyshev-series expansions (§3.11(ii)) with maximum precision 25D. …
28: 18.38 Mathematical Applications
§18.38(i) Classical OP’s: Numerical Analysis
Approximation Theory
The monic Chebyshev polynomial 2 1 n T n ( x ) , n 1 , enjoys the ‘minimax’ property on the interval [ 1 , 1 ] , that is, | 2 1 n T n ( x ) | has the least maximum value among all monic polynomials of degree n . …
Differential Equations: Spectral Methods
Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). …
29: Bibliography C
  • P. L. Chebyshev (1851) Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée. Mem. Ac. Sc. St. Pétersbourg 6, pp. 141–157.
  • C. W. Clenshaw (1955) A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9 (51), pp. 118–120.
  • W. J. Cody (1965b) Chebyshev polynomial expansions of complete elliptic integrals. Math. Comp. 19 (90), pp. 249–259.
  • W. J. Cody (1968) Chebyshev approximations for the Fresnel integrals. Math. Comp. 22 (102), pp. 450–453.
  • W. J. Cody (1969) Rational Chebyshev approximations for the error function. Math. Comp. 23 (107), pp. 631–637.
  • 30: Bibliography R
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • M. Razaz and J. L. Schonfelder (1980) High precision Chebyshev expansions for Airy functions and their derivatives. Technical report University of Birmingham Computer Centre.
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • E. Ya. Remez (1957) General Computation Methods of Chebyshev Approximation. The Problems with Linear Real Parameters. Publishing House of the Academy of Science of the Ukrainian SSR, Kiev.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.