About the Project

Chebyshev ?-function

AdvancedHelp

(0.006 seconds)

1—10 of 122 matching pages

1: 18.3 Definitions
§18.3 Definitions
This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …
Chebyshev
Formula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). …
2: 7.5 Interrelations
7.5.6 e ± 1 2 π i z 2 ( g ( z ) ± i f ( z ) ) = 1 2 ( 1 ± i ) ( C ( z ) ± i S ( z ) ) .
7.5.8 C ( z ) ± i S ( z ) = 1 2 ( 1 ± i ) erf ζ .
7.5.10 g ( z ) ± i f ( z ) = 1 2 ( 1 ± i ) e ζ 2 erfc ζ .
3: 8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.5 e ± π i a 2 i sin ( π a ) Q ( a , z e ± π i ) = ± 1 2 erfc ( ± i η a / 2 ) i T ( a , η ) ,
8.12.18 Q ( a , z ) P ( a , z ) } z a 1 2 e z Γ ( a ) ( d ( ± χ ) k = 0 A k ( χ ) z k / 2 k = 1 B k ( χ ) z k / 2 ) ,
d ( ± χ ) = 1 2 π e χ 2 / 2 erfc ( ± χ / 2 ) ,
4: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
5: 25.12 Polylogarithms
25.12.2 Li 2 ( z ) = 0 z t 1 ln ( 1 t ) d t , z ( 1 , ) .
25.12.3 Li 2 ( z ) + Li 2 ( z z 1 ) = 1 2 ( ln ( 1 z ) ) 2 , z [ 1 , ) .
25.12.4 Li 2 ( z ) + Li 2 ( 1 z ) = 1 6 π 2 1 2 ( ln ( z ) ) 2 , z [ 0 , ) .
25.12.13 Li s ( z ) + e π i s Li s ( 1 z ) = ( 2 π ) s e π i s / 2 Γ ( s ) ζ ( 1 s , ln z 2 π i ) , z [ 0 , ) .
6: 10.36 Other Differential Equations
10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
7: 10.29 Recurrence Relations and Derivatives
For results on modified quotients of the form z 𝒵 ν ± 1 ( z ) / 𝒵 ν ( z ) see Onoe (1955) and Onoe (1956). …
8: 23.2 Definitions and Periodic Properties
23.2.5 ζ ( z ) = 1 z + w 𝕃 { 0 } ( 1 z w + 1 w + z w 2 ) ,
23.2.6 σ ( z ) = z w 𝕃 { 0 } ( ( 1 z w ) exp ( z w + z 2 2 w 2 ) ) .
9: 10.43 Integrals
e ± z z ν 𝒵 ν ( z ) d z = e ± z z ν + 1 2 ν + 1 ( 𝒵 ν ( z ) 𝒵 ν + 1 ( z ) ) , ν 1 2 ,
e ± z z ν 𝒵 ν ( z ) d z = e ± z z ν + 1 1 2 ν ( 𝒵 ν ( z ) 𝒵 ν 1 ( z ) ) , ν 1 2 .
10: 15.12 Asymptotic Approximations
  • (d)

    z > 1 2 and α 1 2 π + δ ph c α + + 1 2 π δ , where

    15.12.1 α ± = arctan ( ph z ph ( 1 z ) π ln | 1 z 1 | ) ,

    with z restricted so that ± α ± [ 0 , 1 2 π ) .

  • where
    15.12.13 G 0 ( ± β ) = ( 2 + e ± ζ ) c b ( 1 / 2 ) ( 1 + e ± ζ ) a c + ( 1 / 2 ) ( z 1 e ± ζ ) a + ( 1 / 2 ) β e ζ e ζ .