About the Project

Cash App Phone Number%E2%98%8E%EF%B8%8F%2B1%28888%E2%80%92481%E2%80%924477%29%E2%98%8E%EF%B8%8F %22Number%22

AdvancedHelp

(0.020 seconds)

11—20 of 859 matching pages

11: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
§26.14(iii) Identities
12: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
13: 24.14 Sums
§24.14 Sums
§24.14(i) Quadratic Recurrence Relations
§24.14(ii) Higher-Order Recurrence Relations
In the following two identities, valid for n 2 , the sums are taken over all nonnegative integers j , k , with j + k + = n . … For other sums involving Bernoulli and Euler numbers and polynomials see Hansen (1975, pp. 331–347) and Prudnikov et al. (1990, pp. 383–386).
14: 24.10 Arithmetic Properties
§24.10 Arithmetic Properties
Here and elsewhere two rational numbers are congruent if the modulus divides the numerator of their difference.
§24.10(ii) Kummer Congruences
§24.10(iii) Voronoi’s Congruence
§24.10(iv) Factors
15: 26.8 Set Partitions: Stirling Numbers
§26.8 Set Partitions: Stirling Numbers
§26.8(i) Definitions
§26.8(v) Identities
§26.8(vi) Relations to Bernoulli Numbers
16: 24.19 Methods of Computation
§24.19(i) Bernoulli and Euler Numbers and Polynomials
Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …A similar method can be used for the Euler numbers based on (4.19.5). …
§24.19(ii) Values of B n Modulo p
We list here three methods, arranged in increasing order of efficiency. …
17: 24.2 Definitions and Generating Functions
§24.2 Definitions and Generating Functions
§24.2(i) Bernoulli Numbers and Polynomials
§24.2(ii) Euler Numbers and Polynomials
Table 24.2.1: Bernoulli and Euler numbers.
n B n E n
Table 24.2.4: Euler numbers E n .
n E n
18: 24.20 Tables
§24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
19: 24.5 Recurrence Relations
§24.5 Recurrence Relations
24.5.4 k = 0 n ( 2 n 2 k ) E 2 k = 0 , n = 1 , 2 , ,
24.5.5 k = 0 n ( n k ) 2 k E n k + E n = 2 .
§24.5(ii) Other Identities
§24.5(iii) Inversion Formulas
20: 27.17 Other Applications
§27.17 Other Applications
Reed et al. (1990, pp. 458–470) describes a number-theoretic approach to Fourier analysis (called the arithmetic Fourier transform) that uses the Möbius inversion (27.5.7) to increase efficiency in computing coefficients of Fourier series. Congruences are used in constructing perpetual calendars, splicing telephone cables, scheduling round-robin tournaments, devising systematic methods for storing computer files, and generating pseudorandom numbers. … There are also applications of number theory in many diverse areas, including physics, biology, chemistry, communications, and art. …