About the Project

Bulirsch%0Aelliptic%20integrals

AdvancedHelp

(0.004 seconds)

11—20 of 792 matching pages

11: 19.1 Special Notation
All derivatives are denoted by differentials, not by primes. … R F ( x , y , z ) , R G ( x , y , z ) , and R J ( x , y , z , p ) are the symmetric (in x , y , and z ) integrals of the first, second, and third kinds; they are complete if exactly one of x , y , and z is identically 0. R a ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) is a multivariate hypergeometric function that includes all the functions in (19.1.3). A third set of functions, introduced by Bulirsch (1965b, a, 1969a), is …The first three functions are incomplete integrals of the first, second, and third kinds, and the cel function includes complete integrals of all three kinds.
12: 19.36 Methods of Computation
Computation of Legendre’s integrals of all three kinds by quadratic transformation is described by Cazenave (1969, pp. 128–159, 208–230). Quadratic transformations can be applied to compute Bulirsch’s integrals19.2(iii)). The function cel ( k c , p , a , b ) is computed by successive Bartky transformations (Bulirsch and Stoer (1968), Bulirsch (1969b)). The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). … Bulirsch (1969a, b) extend Bartky’s transformation to el3 ( x , k c , p ) by expressing it in terms of the first incomplete integral, a complete integral of the third kind, and a more complicated integral to which Bartky’s method can be applied. …
13: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • Bulirsch (1967) provides Chebyshev coefficients for the auxiliary functions f ( x ) and g ( x ) for x 3 (15D).

  • Schonfelder (1978) gives coefficients of Chebyshev expansions for x 1 erf x on 0 x 2 , for x e x 2 erfc x on [ 2 , ) , and for e x 2 erfc x on [ 0 , ) (30D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • 14: 19.25 Relations to Other Functions
    All terms on the right-hand sides are nonnegative when k 2 0 , 0 k 2 1 , or 1 k 2 c , respectively. …
    §19.25(ii) Bulirsch’s Integrals as Symmetric Integrals
    Assume 0 x y z , x < z , ( x , y ) ( 0 , 0 ) and p > 0 . …with α 0 . … If cs 2 ( u , k ) 0 , then …
    15: Bibliography B
  • R. Bulirsch (1969a) An extension of the Bartky-transformation to incomplete elliptic integrals of the third kind. Numer. Math. 13 (3), pp. 266–284.
  • R. Bulirsch (1969b) Numerical calculation of elliptic integrals and elliptic functions. III. Numer. Math. 13 (4), pp. 305–315.
  • R. Bulirsch (1965a) Numerical calculation of elliptic integrals and elliptic functions. II. Numer. Math. 7 (4), pp. 353–354.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • R. Bulirsch (1967) Numerical calculation of the sine, cosine and Fresnel integrals. Numer. Math. 9 (5), pp. 380–385.
  • 16: 22.22 Software
    See Bulirsch (1965b). …
    17: 7.25 Software
    §7.25(ii) erf x , erfc x , i n erfc ( x ) , x
    §7.25(iv) C ( x ) , S ( x ) , f ( x ) , g ( x ) , x
    See also Bulirsch (1967) and Lotsch and Gray (1964).
    §7.25(v) C ( z ) , S ( z ) , z
    §7.25(vii) ( z ) , G ( z ) , z
    18: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • K. Reinsch and W. Raab (2000) Elliptic Integrals of the First and Second Kind – Comparison of Bulirsch’s and Carlson’s Algorithms for Numerical Calculation. In Special Functions (Hong Kong, 1999), C. Dunkl, M. Ismail, and R. Wong (Eds.), pp. 293–308.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.
  • 19: 8.26 Tables
  • Pagurova (1963) tabulates P ( a , x ) and Q ( a , x ) (with different notation) for a = 0 ( .05 ) 3 , x = 0 ( .05 ) 1 to 7D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Chiccoli et al. (1988) presents a short table of E p ( x ) for p = 9 2 ( 1 ) 1 2 , 0 x 200 to 14S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 20: 6.19 Tables
    §6.19(ii) Real Variables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.