About the Project

Bailey%E2%80%93Daum%20q-Kummer%20sum

AdvancedHelp

(0.005 seconds)

1—10 of 435 matching pages

1: 17.12 Bailey Pairs
§17.12 Bailey Pairs
Bailey Transform
Bailey Pairs
Weak Bailey Lemma
Strong Bailey Lemma
2: 17 q-Hypergeometric and Related Functions
Chapter 17 q -Hypergeometric and Related Functions
3: Bibliography
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • G. E. Andrews and A. Berkovich (1998) A trinomial analogue of Bailey’s lemma and N = 2 superconformal invariance. Comm. Math. Phys. 192 (2), pp. 245–260.
  • G. E. Andrews (2000) Umbral calculus, Bailey chains, and pentagonal number theorems. J. Combin. Theory Ser. A 91 (1-2), pp. 464–475.
  • G. E. Andrews (2001) Bailey’s Transform, Lemma, Chains and Tree. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), J. Bustoz, M. E. H. Ismail, and S. K. Suslov (Eds.), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 1–22.
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 4: 17.8 Special Cases of ψ r r Functions
    17.8.1 n = ( z ) n q n ( n 1 ) / 2 = ( q , z , q / z ; q ) ;
    17.8.3 n = ( 1 ) n q n ( 3 n 1 ) / 2 z 3 n ( 1 + z q n ) = ( q , z , q / z ; q ) ( q z 2 , q / z 2 ; q 2 ) .
    Bailey’s Bilateral Summations
    Sum Related to (17.6.4)
    5: Bibliography B
  • D. H. Bailey (1995) A Fortran-90 based multiprecision system. ACM Trans. Math. Software 21 (4), pp. 379–387.
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • W. N. Bailey (1929) Transformations of generalized hypergeometric series. Proc. London Math. Soc. (2) 29 (2), pp. 495–502.
  • W. N. Bailey (1938) The generating function of Jacobi polynomials. J. London Math. Soc. 13, pp. 8–12.
  • W. N. Bailey (1964) Generalized Hypergeometric Series. Stechert-Hafner, Inc., New York.
  • 6: 4.48 Software
  • Bailey (1993). Fortran.

  • See also Bailey (1995), Hull and Abrham (1986), Xu and Li (1994). …
    7: 17.1 Special Notation
    f ( χ 1 ; χ 2 , , χ n ) + idem ( χ 1 ; χ 2 , , χ n ) = j = 1 n f ( χ j ; χ 1 , χ 2 , , χ j 1 , χ j + 1 , , χ n ) .
    A slightly different notation is that in Bailey (1964) and Slater (1966); see §17.4(i). …
    8: 17.10 Transformations of ψ r r Functions
    §17.10 Transformations of ψ r r Functions
    Bailey’s ψ 2 2 Transformations
    17.10.4 ψ 2 2 ( e , f a q / c , a q / d ; q , a q e f ) = ( q / c , q / d , a q / e , a q / f ; q ) ( a q , q / a , a q / ( c d ) , a q / ( e f ) ; q ) n = ( 1 a q 2 n ) ( c , d , e , f ; q ) n ( 1 a ) ( a q / c , a q / d , a q / e , a q / f ; q ) n ( q a 3 c d e f ) n q n 2 .
    9: 17.6 ϕ 1 2 Function
    q -Gauss Sum
    First q -Chu–Vandermonde Sum
    Second q -Chu–Vandermonde Sum
    Andrews–Askey Sum
    BaileyDaum q -Kummer Sum
    10: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .