About the Project

赞恩州立学院国际商务文凭证书〖办证V信ATV1819〗psiup

AdvancedHelp

(0.002 seconds)

11—20 of 100 matching pages

11: 36.9 Integral Identities
36.9.1 | Ψ 1 ( x ) | 2 = 2 5 / 3 0 Ψ 1 ( 2 2 / 3 ( 3 u 2 + x ) ) d u ;
36.9.4 | Ψ 2 ( x , y ) | 2 = 0 ( Ψ 1 ( 4 u 3 + 2 u y + x u 1 / 3 ) + Ψ 1 ( 4 u 3 + 2 u y x u 1 / 3 ) ) d u u 1 / 3 .
36.9.5 | Ψ 2 ( x , y ) | 2 = 2 0 cos ( 2 x u ) Ψ 1 ( 2 u 2 / 3 ( y + 2 u 2 ) ) d u u 1 / 3 .
36.9.6 | Ψ 3 ( x , y , z ) | 2 = 2 4 / 5 Ψ 3 ( 2 4 / 5 ( x + 2 u y + 3 u 2 z + 5 u 4 ) , 0 , 2 2 / 5 ( z + 10 u 2 ) ) d u .
36.9.7 | Ψ 3 ( x , y , z ) | 2 = 2 7 / 4 5 1 / 4 0 ( e 2 i u ( u 4 + z u 2 + x ) Ψ 2 ( 2 7 / 4 5 1 / 4 y u 3 / 4 , 2 u 5 ( 3 z + 10 u 2 ) ) ) d u u 1 / 4 .
12: 36.2 Catastrophes and Canonical Integrals
Ψ 1 is related to the Airy function (§9.2): … Ψ 2 is the Pearcey integral (Pearcey (1946)): …
Ψ 1 ( 𝟎 ) = 1.54669 ,
Ψ 2 ( 𝟎 ) = 1.67481 + i  0.69373
Ψ 3 ( 𝟎 ) = 1.74646 ,
13: Sidebar 5.SB1: Gamma & Digamma Phase Plots
The color encoded phases of Γ ( z ) (above) and ψ ( z ) (below), are constrasted in the negative half of the complex plane. … In the lower half of the image, the poles of ψ ( z ) (corresponding to the poles of Γ ( z ) ) and the zeros between them are clear. …
14: 36.6 Scaling Relations
Ψ K ( 𝐱 ; k ) = k β K Ψ K ( 𝐲 ( k ) ) ,
Ψ ( U ) ( 𝐱 ; k ) = k β ( U ) Ψ ( U ) ( 𝐲 ( U ) ( k ) ) ,
Indices for k -Scaling of Magnitude of Ψ K or Ψ ( U ) (Singularity Index)
15: 5.5 Functional Relations
5.5.2 ψ ( z + 1 ) = ψ ( z ) + 1 z .
5.5.4 ψ ( z ) ψ ( 1 z ) = π / tan ( π z ) , z 0 , ± 1 , .
5.5.8 ψ ( 2 z ) = 1 2 ( ψ ( z ) + ψ ( z + 1 2 ) ) + ln 2 ,
5.5.9 ψ ( n z ) = 1 n k = 0 n 1 ψ ( z + k n ) + ln n .
16: 31.17 Physical Applications
𝐉 2 Ψ ( 𝐱 ) ( 𝐬 + 𝐭 + 𝐮 ) 2 Ψ ( 𝐱 ) = j ( j + 1 ) Ψ ( 𝐱 ) ,
𝐻 s Ψ ( 𝐱 ) ( 2 𝐬 𝐭 ( 2 / a ) 𝐬 𝐮 ) Ψ ( 𝐱 ) = h s Ψ ( 𝐱 ) ,
for the common eigenfunction Ψ ( 𝐱 ) = Ψ ( x s , x t , x u ) , where a is the coupling parameter of interacting spins. …The operators 𝐉 2 and 𝐻 s admit separation of variables in z 1 , z 2 , leading to the following factorization of the eigenfunction Ψ ( 𝐱 ) :
31.17.4 Ψ ( 𝐱 ) = ( z 1 z 2 ) s 1 4 ( ( z 1 1 ) ( z 2 1 ) ) t 1 4 ( ( z 1 a ) ( z 2 a ) ) u 1 4 w ( z 1 ) w ( z 2 ) ,
17: 17.8 Special Cases of ψ r r Functions
§17.8 Special Cases of ψ r r Functions
Ramanujan’s ψ 1 1 Summation
17.8.4 ψ 2 2 ( b , c ; a q / b , a q / c ; q , a q / ( b c ) ) = ( a q / ( b c ) ; q ) ( a q 2 / b 2 , a q 2 / c 2 , q 2 , a q , q / a ; q 2 ) ( a q / b , a q / c , q / b , q / c , a q / ( b c ) ; q ) ,
17.8.5 ψ 3 3 ( b , c , d q / b , q / c , q / d ; q , q b c d ) = ( q , q / ( b c ) , q / ( b d ) , q / ( c d ) ; q ) ( q / b , q / c , q / d , q / ( b c d ) ; q ) ,
18: 5.7 Series Expansions
5.7.4 ψ ( 1 + z ) = γ + k = 2 ( 1 ) k ζ ( k ) z k 1 , | z | < 1 ,
5.7.5 ψ ( 1 + z ) = 1 2 z π 2 cot ( π z ) + 1 z 2 1 + 1 γ k = 1 ( ζ ( 2 k + 1 ) 1 ) z 2 k , | z | < 2 , z 0 , ± 1 .
5.7.6 ψ ( z ) = γ 1 z + k = 1 z k ( k + z ) = γ + k = 0 ( 1 k + 1 1 k + z ) ,
5.7.7 ψ ( z + 1 2 ) ψ ( z 2 ) = 2 k = 0 ( 1 ) k k + z .
5.7.8 ψ ( 1 + i y ) = k = 1 y k 2 + y 2 .
19: 31.8 Solutions via Quadratures
31.8.2 w ± ( 𝐦 ; λ ; z ) = Ψ g , N ( λ , z ) exp ( ± i ν ( λ ) 2 z 0 z t m 1 ( t 1 ) m 2 ( t a ) m 3 d t Ψ g , N ( λ , t ) t ( t 1 ) ( t a ) )
Here Ψ g , N ( λ , z ) is a polynomial of degree g in λ and of degree N = m 0 + m 1 + m 2 + m 3 in z , that is a solution of the third-order differential equation satisfied by a product of any two solutions of Heun’s equation. … By automorphisms from §31.2(v), similar solutions also exist for m 0 , m 1 , m 2 , m 3 , and Ψ g , N ( λ , z ) may become a rational function in z . …
Ψ 1 , 2 = z 2 + λ z + a ,
Ψ 1 , 1 = ( z 2 + ( λ + 3 a + 3 ) z + a ) / z 3 ,
20: 5.3 Graphics
See accompanying text
Figure 5.3.3: ψ ( x ) . Magnify
See accompanying text
Figure 5.3.6: | ψ ( x + i y ) | . Magnify 3D Help