About the Project

愛知東邦大学学士成绩单【购证 微kaa77788】54Z

AdvancedHelp

(0.001 seconds)

21—30 of 60 matching pages

21: 19.36 Methods of Computation
19.36.4 z 1 = 2.10985 99098 8 , z 3 = 2.15673 49098 8 , Z 1 = 0.00977 77253 5 , z 2 = 2.12548 49098 8 , A = 2.13069 32432 1 , Z 2 = 0.00244 44313 4 , Z 3 = Z 1 Z 2 = 0.01222 21566 9 , E 2 = -1.25480 14×10⁻⁴ , E 3 = -2.9212×10⁻⁷ .
22: 21.6 Products
Also, let 𝐙 be an arbitrary g × h matrix. …
21.6.3 j = 1 h θ ( k = 1 h T j k 𝐳 k | 𝛀 ) = 1 𝒟 g 𝐀 𝒦 𝐁 𝒦 e 2 π i tr [ 1 2 𝐀 T 𝛀 𝐀 + 𝐀 T [ 𝐙 + 𝐁 ] ] j = 1 h θ ( 𝐳 j + 𝛀 𝐚 j + 𝐛 j | 𝛀 ) ,
where 𝐳 j , 𝐚 j , 𝐛 j denote respectively the j th columns of 𝐙 , 𝐀 , 𝐁 . …
23: 18.8 Differential Equations
Item 11 of Table 18.8.1 yields (18.39.36) for Z = 1 .
24: 6.14 Integrals
25: 26.5 Lattice Paths: Catalan Numbers
26: 18.40 Methods of Computation
See accompanying text
Figure 18.40.1: Histogram approximations to the Repulsive Coulomb–Pollaczek, RCP, weight function integrated over [ 1 , x ) , see Figure 18.39.2 for an exact result, for Z = + 1 , shown for N = 12 and N = 120 . Magnify
27: 35.5 Bessel Functions of Matrix Argument
28: Bibliography E
  • F. H. L. Essler, H. Frahm, A. R. Its, and V. E. Korepin (1996) Painlevé transcendent describes quantum correlation function of the X X Z antiferromagnet away from the free-fermion point. J. Phys. A 29 (17), pp. 5619–5626.
  • 29: 4.7 Derivatives and Differential Equations
    30: 5.5 Functional Relations