About the Project

”Blockchain” login issue Number 1206⤄360⤄1604 customer support ☎️"Number"

AdvancedHelp

(0.003 seconds)

11—20 of 252 matching pages

11: 26.5 Lattice Paths: Catalan Numbers
§26.5 Lattice Paths: Catalan Numbers
§26.5(i) Definitions
C ( n ) is the Catalan number. …
§26.5(ii) Generating Function
§26.5(iii) Recurrence Relations
12: Nico M. Temme
On the occasion of his retirement in 2005 he was awarded the decoration Knight in the Order of the Dutch Lion, issued by the King of the Netherlands. …
13: 4.19 Maclaurin Series and Laurent Series
In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
14: 26.14 Permutations: Order Notation
As an example, 35247816 is an element of 𝔖 8 . The inversion number is the number of pairs of elements for which the larger element precedes the smaller: … The Eulerian number, denoted n k , is the number of permutations in 𝔖 n with exactly k descents. …The Eulerian number n k is equal to the number of permutations in 𝔖 n with exactly k excedances. …
§26.14(iii) Identities
15: 26.7 Set Partitions: Bell Numbers
§26.7 Set Partitions: Bell Numbers
§26.7(i) Definitions
§26.7(ii) Generating Function
§26.7(iii) Recurrence Relation
§26.7(iv) Asymptotic Approximation
16: Publications
  • D. W. Lozier (2003) The NIST Digital Library of Mathematical Functions Project, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 105–119. PDF
  • B. R. Miller and A. Youssef (2003) Technical Aspects of the Digital Library of Mathematical Functions, Annals of Mathematics and Artificial Intelligence—Special Issue on Mathematical Knowledge Management, Vol. 38, Nos. 1–3, pp. 121–136. PDF
  • 17: 26.8 Set Partitions: Stirling Numbers
    §26.8 Set Partitions: Stirling Numbers
    §26.8(i) Definitions
    §26.8(v) Identities
    §26.8(vi) Relations to Bernoulli Numbers
    18: 1.2 Elementary Algebra
    The arithmetic mean of n numbers a 1 , a 2 , , a n is … If r is a nonzero real number, then the weighted mean M ( r ) of n nonnegative numbers a 1 , a 2 , , a n , and n positive numbers p 1 , p 2 , , p n with … Numerical methods and issues for solution of (1.2.61) appear in §§3.2(i) to 3.2(iii). … Numerical methods and issues for solution of (1.2.72) appear in §§3.2(iv) to 3.2(vii). … The diagonal elements are not necessarily distinct, and the number of identical (degenerate) diagonal elements is the multiplicity of that specific eigenvalue. …
    19: 24.19 Methods of Computation
    §24.19(i) Bernoulli and Euler Numbers and Polynomials
    Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …A similar method can be used for the Euler numbers based on (4.19.5). …
    §24.19(ii) Values of B n Modulo p
    We list here three methods, arranged in increasing order of efficiency. …
    20: 27.17 Other Applications
    §27.17 Other Applications
    Reed et al. (1990, pp. 458–470) describes a number-theoretic approach to Fourier analysis (called the arithmetic Fourier transform) that uses the Möbius inversion (27.5.7) to increase efficiency in computing coefficients of Fourier series. Congruences are used in constructing perpetual calendars, splicing telephone cables, scheduling round-robin tournaments, devising systematic methods for storing computer files, and generating pseudorandom numbers. … There are also applications of number theory in many diverse areas, including physics, biology, chemistry, communications, and art. …