About the Project

黑龙江时时彩开奖时段【杏彩官方qee9.com】卡塔尔世界杯32支球队9D2

AdvancedHelp

The terms "时时彩", "qee9.com" were not found.Possible alternative term: "becom".

(0.004 seconds)

1—10 of 188 matching pages

1: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 32 Painlevé Transcendents
Chapter 32 Painlevé Transcendents
3: 34.7 Basic Properties: 9 j Symbol
§34.7 Basic Properties: 9 j Symbol
§34.7(ii) Symmetry
§34.7(iv) Orthogonality
§34.7(vi) Sums
It constitutes an addition theorem for the 9 j symbol. …
4: 34.1 Special Notation
2 j 1 , 2 j 2 , 2 j 3 , 2 l 1 , 2 l 2 , 2 l 3 nonnegative integers.
The main functions treated in this chapter are the Wigner 3 j , 6 j , 9 j symbols, respectively, …
{ j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } .
For other notations for 3 j , 6 j , 9 j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
5: 28.15 Expansions for Small q
28.15.1 λ ν ( q ) = ν 2 + 1 2 ( ν 2 1 ) q 2 + 5 ν 2 + 7 32 ( ν 2 1 ) 3 ( ν 2 4 ) q 4 + 9 ν 4 + 58 ν 2 + 29 64 ( ν 2 1 ) 5 ( ν 2 4 ) ( ν 2 9 ) q 6 + .
28.15.3 me ν ( z , q ) = e i ν z q 4 ( 1 ν + 1 e i ( ν + 2 ) z 1 ν 1 e i ( ν 2 ) z ) + q 2 32 ( 1 ( ν + 1 ) ( ν + 2 ) e i ( ν + 4 ) z + 1 ( ν 1 ) ( ν 2 ) e i ( ν 4 ) z 2 ( ν 2 + 1 ) ( ν 2 1 ) 2 e i ν z ) + ;
6: Staff
  • Peter A. Clarkson, University of Kent, Chap. 32

  • Frank W. J. Olver, University of Maryland and NIST, Chaps. 1, 2, 4, 9, 10

  • Peter A. Clarkson, University of Kent, for Chap. 32

  • Diego Dominici, State University of New York at New Paltz, for Chaps. 9, 10 (deceased)

  • 7: Bibliography E
  • M. Edwards, D. A. Griggs, P. L. Holman, C. W. Clark, S. L. Rolston, and W. D. Phillips (1999) Properties of a Raman atom-laser output coupler. J. Phys. B 32 (12), pp. 2935–2950.
  • E. B. Elliott (1903) A formula including Legendre’s E K + K E K K = 1 2 π . Messenger of Math. 33, pp. 31–32.
  • A. Erdélyi (1941c) On algebraic Lamé functions. Philos. Mag. (7) 32, pp. 348–350.
  • D. Erricolo (2006) Algorithm 861: Fortran 90 subroutines for computing the expansion coefficients of Mathieu functions using Blanch’s algorithm. ACM Trans. Math. Software 32 (4), pp. 622–634.
  • W. N. Everitt (1982) On the transformation theory of ordinary second-order linear symmetric differential expressions. Czechoslovak Math. J. 32(107) (2), pp. 275–306.
  • 8: 26.2 Basic Definitions
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    9 30 26 2436 43 63261
    15 176 32 8349 49 1 73525
    9: 28.6 Expansions for Small q
    Leading terms of the of the power series for m = 7 , 8 , 9 , are:
    28.6.14 a m ( q ) b m ( q ) } = m 2 + 1 2 ( m 2 1 ) q 2 + 5 m 2 + 7 32 ( m 2 1 ) 3 ( m 2 4 ) q 4 + 9 m 4 + 58 m 2 + 29 64 ( m 2 1 ) 5 ( m 2 4 ) ( m 2 9 ) q 6 + .
    Numerical values of the radii of convergence ρ n ( j ) of the power series (28.6.1)–(28.6.14) for n = 0 , 1 , , 9 are given in Table 28.6.1. …
    28.6.21 2 1 / 2 ce 0 ( z , q ) = 1 1 2 q cos 2 z + 1 32 q 2 ( cos 4 z 2 ) 1 128 q 3 ( 1 9 cos 6 z 11 cos 2 z ) + ,
    28.6.26 ce m ( z , q ) = cos m z q 4 ( 1 m + 1 cos ( m + 2 ) z 1 m 1 cos ( m 2 ) z ) + q 2 32 ( 1 ( m + 1 ) ( m + 2 ) cos ( m + 4 ) z + 1 ( m 1 ) ( m 2 ) cos ( m 4 ) z 2 ( m 2 + 1 ) ( m 2 1 ) 2 cos m z ) + .
    10: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    9 23 67 109 167 227 277 347 401 461 523
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    5 4 2 6 18 6 6 39 31 30 2 32 44 20 6 84
    6 2 4 12 19 18 2 20 32 16 6 63 45 24 6 78
    8 4 4 15 21 12 4 32 34 16 4 54 47 46 2 48
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72