About the Project

新房办不动产证要哪些材料【购证 微kaa77788】4fAK

AdvancedHelp

The term"kaa77788" was not found.Possible alternative term: "27789".

(0.004 seconds)

1—10 of 517 matching pages

1: Bibliography S
  • F. W. Schäfke and H. Groh (1962) Zur Berechnung der Eigenwerte der Sphäroiddifferentialgleichung. Numer. Math. 4, pp. 310–312 (German).
  • D. Schmidt and G. Wolf (1979) A method of generating integral relations by the simultaneous separability of generalized Schrödinger equations. SIAM J. Math. Anal. 10 (4), pp. 823–838.
  • D. V. Slavić (1974) Complements to asymptotic development of sine cosine integrals, and auxiliary functions. Univ. Beograd. Publ. Elecktrotehn. Fak., Ser. Mat. Fiz. 461–497, pp. 185–191.
  • B. D. Sleeman (1968b) On parabolic cylinder functions. J. Inst. Math. Appl. 4 (1), pp. 106–112.
  • D. Sornette (1998) Multiplicative processes and power laws. Phys. Rev. E 57 (4), pp. 4811–4813.
  • 2: Bibliography M
  • D. R. Masson (1991) Associated Wilson polynomials. Constr. Approx. 7 (4), pp. 521–534.
  • G. J. Miel (1981) Evaluation of complex logarithms and related functions. SIAM J. Numer. Anal. 18 (4), pp. 744–750.
  • J. W. Miles (1975) Asymptotic approximations for prolate spheroidal wave functions. Studies in Appl. Math. 54 (4), pp. 315–349.
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • D. S. Mitrinović (1970) Analytic Inequalities. Springer-Verlag, New York.
  • 3: 4 Elementary Functions
    Chapter 4 Elementary Functions
    4: 22.9 Cyclic Identities
    These identities are cyclic in the sense that each of the indices m , n in the first product of, for example, the form s m , p ( 4 ) s n , p ( 4 ) are simultaneously permuted in the cyclic order: m m + 1 m + 2 p 1 2 m 1 ; n n + 1 n + 2 p 1 2 n 1 . …
    22.9.17 d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) ± d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) + d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) ± d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) = k ( ± d 1 , 4 ( 2 ) + d 2 , 4 ( 2 ) ± d 3 , 4 ( 2 ) + d 4 , 4 ( 2 ) ) ,
    22.9.18 ( d 1 , 4 ( 2 ) ) 2 d 3 , 4 ( 2 ) ± ( d 2 , 4 ( 2 ) ) 2 d 4 , 4 ( 2 ) + ( d 3 , 4 ( 2 ) ) 2 d 1 , 4 ( 2 ) ± ( d 4 , 4 ( 2 ) ) 2 d 2 , 4 ( 2 ) = k ( d 1 , 4 ( 2 ) ± d 2 , 4 ( 2 ) + d 3 , 4 ( 2 ) ± d 4 , 4 ( 2 ) ) ,
    §22.9(iv) Typical Identities of Rank 4
    22.9.23 s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) + s 3 , 3 ( 4 ) d 3 , 3 ( 4 ) c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) = κ 2 1 κ 2 ( s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) ) .
    5: 6.3 Graphics
    See accompanying text
    Figure 6.3.3: | E 1 ( x + i y ) | , 4 x 4 , 4 y 4 . … Magnify 3D Help
    6: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    7: 11.8 Analogs to Kelvin Functions
    §11.8 Analogs to Kelvin Functions
    For properties of Struve functions of argument x e ± 3 π i / 4 see McLachlan and Meyers (1936).
    8: 22.10 Maclaurin Series
    22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
    22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
    22.10.3 dn ( z , k ) = 1 k 2 z 2 2 ! + k 2 ( 4 + k 2 ) z 4 4 ! k 2 ( 16 + 44 k 2 + k 4 ) z 6 6 ! + O ( z 8 ) .
    22.10.4 sn ( z , k ) = sin z k 2 4 ( z sin z cos z ) cos z + O ( k 4 ) ,
    22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
    9: 4.43 Cubic Equations
    A = ( 4 3 p ) 1 / 2 ,
    B = ( 4 3 p ) 1 / 2 .
  • (a)

    A sin a , A sin ( a + 2 3 π ) , and A sin ( a + 4 3 π ) , with sin ( 3 a ) = 4 q / A 3 , when 4 p 3 + 27 q 2 0 .

  • (b)

    A cosh a , A cosh ( a + 2 3 π i ) , and A cosh ( a + 4 3 π i ) , with cosh ( 3 a ) = 4 q / A 3 , when p < 0 , q < 0 , and 4 p 3 + 27 q 2 > 0 .

  • (c)

    B sinh a , B sinh ( a + 2 3 π i ) , and B sinh ( a + 4 3 π i ) , with sinh ( 3 a ) = 4 q / B 3 , when p > 0 .

  • 10: 12.7 Relations to Other Functions
    12.7.8 U ( 2 , z ) = z 5 / 2 4 2 π ( 2 K 1 4 ( 1 4 z 2 ) + 3 K 3 4 ( 1 4 z 2 ) K 5 4 ( 1 4 z 2 ) ) ,
    12.7.9 U ( 1 , z ) = z 3 / 2 2 2 π ( K 1 4 ( 1 4 z 2 ) + K 3 4 ( 1 4 z 2 ) ) ,
    12.7.11 U ( 1 , z ) = z 3 / 2 2 π ( K 3 4 ( 1 4 z 2 ) K 1 4 ( 1 4 z 2 ) ) .
    12.7.12 u 1 ( a , z ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) = e 1 4 z 2 M ( 1 2 a + 1 4 , 1 2 , 1 2 z 2 ) ,
    12.7.13 u 2 ( a , z ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) = z e 1 4 z 2 M ( 1 2 a + 3 4 , 3 2 , 1 2 z 2 ) .