About the Project

斗地主免费领现金是真的吗【杏彩体育qee9.com】DCS

AdvancedHelp

The term"qee9.com" was not found.Possible alternative term: "becom".

(0.002 seconds)

1—10 of 17 matching pages

1: Gloria Wiersma
 1937 in Washington, DC) joined the NIST staff in 1973, where she occupied various positions providing support for the Physics Laboratory until 1993. …
2: 22.13 Derivatives and Differential Equations
Table 22.13.1: Derivatives of Jacobian elliptic functions with respect to variable.
d d z ( sn z ) = cn z dn z d d z ( dc z )  = k 2 sc z nc z
d d z ( cn z ) = sn z dn z d d z ( nc z )  = sc z dc z
d d z ( dn z ) = k 2 sn z cn z d d z ( sc z )  = dc z nc z
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
22.13.19 d 2 d z 2 dc ( z , k ) = ( 1 + k 2 ) dc ( z , k ) + 2 dc 3 ( z , k ) ,
3: 22.4 Periods, Poles, and Zeros
Table 22.4.1: Periods and poles of Jacobian elliptic functions.
Periods z -Poles
4 K , 2 i K sn cd dc ns
Table 22.4.3: Half- or quarter-period shifts of variable for the Jacobian elliptic functions.
u
sn u cd z k 1 dc z k 1 ns z sn z sn z sn z
cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
dc u ns z k sn z k cd z dc z dc z dc z
ns u dc z k cd z k sn z ns z ns z ns z
4: 22.6 Elementary Identities
22.6.3 k 2 sc 2 ( z , k ) + 1 = dc 2 ( z , k ) = k 2 nc 2 ( z , k ) + k 2 ,
22.6.11 dc ( 2 z , k ) = dc 2 ( z , k ) + k 2 sc 2 ( z , k ) nc 2 ( z , k ) 1 k 2 sc 4 ( z , k ) ,
22.6.12 nc ( 2 z , k ) = nc 2 ( z , k ) + sc 2 ( z , k ) dc 2 ( z , k ) 1 k 2 sc 4 ( z , k ) ,
22.6.13 sc ( 2 z , k ) = 2 sc ( z , k ) dc ( z , k ) nc ( z , k ) 1 k 2 sc 4 ( z , k ) ,
Table 22.6.1: Jacobi’s imaginary transformation of Jacobian elliptic functions.
sn ( i z , k ) = i sc ( z , k ) dc ( i z , k ) = dn ( z , k )
5: 22.8 Addition Theorems
22.8.7 dc ( u + v ) = dc u dc v + k 2 sc u nc u sc v nc v 1 k 2 sc 2 u sc 2 v ,
22.8.8 nc ( u + v ) = nc u nc v + sc u dc u sc v dc v 1 k 2 sc 2 u sc 2 v ,
22.8.9 sc ( u + v ) = sc u dc v nc v + sc v dc u nc u 1 k 2 sc 2 u sc 2 v ,
6: 22.14 Integrals
7: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. …
See accompanying text
Figure 22.3.20: dc ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . … Magnify 3D Help
8: 22.5 Special Values
Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
z
dc z 1 , 0 , 1 0 , k k , 0 1 , 0 1 , 0 1 , 0
Table 22.5.3: Limiting forms of Jacobian elliptic functions as k 0 .
sn ( z , k ) sin z cd ( z , k ) cos z dc ( z , k ) sec z ns ( z , k ) csc z
Table 22.5.4: Limiting forms of Jacobian elliptic functions as k 1 .
sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
9: 22.1 Special Notation
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . …
10: 22.15 Inverse Functions
are denoted respectively by …
22.15.18 arcdc ( x , k ) = 1 x d t ( t 2 1 ) ( t 2 k 2 ) , 1 x < ,