About the Project

推排九扑克牌咋玩【杏彩体育qee9.com】3cN

AdvancedHelp

The term"qee9.com" was not found.Possible alternative term: "becom".

(0.001 seconds)

1—10 of 579 matching pages

1: 34.2 Definition: 3 j Symbol
§34.2 Definition: 3 j Symbol
The quantities j 1 , j 2 , j 3 in the 3 j symbol are called angular momenta. …They therefore satisfy the triangle conditions …where r , s , t is any permutation of 1 , 2 , 3 . The corresponding projective quantum numbers m 1 , m 2 , m 3 are given by …
2: 22.8 Addition Theorems
22.8.15 cn ( u + v ) = sn u cn u dn v sn v cn v dn u sn u cn v dn v sn v cn u dn u ,
22.8.20 | sn z 1 cn z 1 dn z 1 1 sn z 2 cn z 2 dn z 2 1 sn z 3 cn z 3 dn z 3 1 sn z 4 cn z 4 dn z 4 1 | = 0 ,
22.8.21 k 2 k 2 k 2 sn z 1 sn z 2 sn z 3 sn z 4 + k 2 cn z 1 cn z 2 cn z 3 cn z 4 dn z 1 dn z 2 dn z 3 dn z 4 = 0 .
22.8.23 | sn z 1 cn z 1 cn z 1 dn z 1 cn z 1 dn z 1 sn z 2 cn z 2 cn z 2 dn z 2 cn z 2 dn z 2 sn z 3 cn z 3 cn z 3 dn z 3 cn z 3 dn z 3 sn z 4 cn z 4 cn z 4 dn z 4 cn z 4 dn z 4 | = 0 .
is independent of z 1 , z 2 , z 3 . …
3: 22.18 Mathematical Applications
y = b cn ( u , k ) ,
By use of the functions sn and cn , parametrizations of algebraic equations, such as … Algebraic curves of the form y 2 = P ( x ) , where P is a nonsingular polynomial of degree 3 or 4 (see McKean and Moll (1999, §1.10)), are elliptic curves, which are also considered in §23.20(ii). …For any two points ( x 1 , y 1 ) and ( x 2 , y 2 ) on this curve, their sum ( x 3 , y 3 ) , always a third point on the curve, is defined by the Jacobi–Abel addition law …This provides an abelian group structure, and leads to important results in number theory, discussed in an elementary manner by Silverman and Tate (1992), and more fully by Koblitz (1993, Chapter 1, especially §1.7) and McKean and Moll (1999, Chapter 3). …
4: 22.13 Derivatives and Differential Equations
22.13.2 ( d d z cn ( z , k ) ) 2 = ( 1 cn 2 ( z , k ) ) ( k 2 + k 2 cn 2 ( z , k ) ) ,
22.13.13 d 2 d z 2 sn ( z , k ) = ( 1 + k 2 ) sn ( z , k ) + 2 k 2 sn 3 ( z , k ) ,
22.13.14 d 2 d z 2 cn ( z , k ) = ( k 2 k 2 ) cn ( z , k ) 2 k 2 cn 3 ( z , k ) ,
22.13.15 d 2 d z 2 dn ( z , k ) = ( 1 + k 2 ) dn ( z , k ) 2 dn 3 ( z , k ) .
22.13.16 d 2 d z 2 cd ( z , k ) = ( 1 + k 2 ) cd ( z , k ) + 2 k 2 cd 3 ( z , k ) ,
5: 22.10 Maclaurin Series
22.10.1 sn ( z , k ) = z ( 1 + k 2 ) z 3 3 ! + ( 1 + 14 k 2 + k 4 ) z 5 5 ! ( 1 + 135 k 2 + 135 k 4 + k 6 ) z 7 7 ! + O ( z 9 ) ,
22.10.2 cn ( z , k ) = 1 z 2 2 ! + ( 1 + 4 k 2 ) z 4 4 ! ( 1 + 44 k 2 + 16 k 4 ) z 6 6 ! + O ( z 8 ) ,
22.10.5 cn ( z , k ) = cos z + k 2 4 ( z sin z cos z ) sin z + O ( k 4 ) ,
22.10.8 cn ( z , k ) = sech z + k 2 4 ( z sinh z cosh z ) tanh z sech z + O ( k 4 ) ,
6: 29.18 Mathematical Applications
y = i k k r cn ( β , k ) cn ( γ , k ) ,
where u 1 , u 2 , u 3 satisfy the differential equations …
29.18.7 d 2 u 3 d γ 2 + ( h ν ( ν + 1 ) k 2 sn 2 ( γ , k ) ) u 3 = 0 ,
y = k k cn ( α , k ) cn ( β , k ) cn ( γ , k ) ,
where u 1 , u 2 , u 3 each satisfy the Lamé wave equation (29.11.1). …
7: 29.8 Integral Equations
29.8.1 x = k 2 sn ( z , k ) sn ( z 1 , k ) sn ( z 2 , k ) sn ( z 3 , k ) k 2 k 2 cn ( z , k ) cn ( z 1 , k ) cn ( z 2 , k ) cn ( z 3 , k ) + 1 k 2 dn ( z , k ) dn ( z 1 , k ) dn ( z 2 , k ) dn ( z 3 , k ) ,
where z , z 1 , z 2 , z 3 are real, and sn , cn , dn are the Jacobian elliptic functions (§22.2). …
29.8.2 μ w ( z 1 ) w ( z 2 ) w ( z 3 ) = 2 K 2 K 𝖯 ν ( x ) w ( z ) d z ,
29.8.8 𝐸𝑠 ν 2 m + 1 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K + d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = 0 = k 2 k cn ( z 1 , k ) K K cn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) d z ,
29.8.9 𝐸𝑠 ν 2 m + 2 ( z 1 , k 2 ) d w 2 ( z ) / d z | z = K d w 2 ( z ) / d z | z = K w 2 ( 0 ) = k 4 k sn ( z 1 , k ) cn ( z 1 , k ) K K sn ( z , k ) cn ( z , k ) d 2 𝖯 ν ( y ) d y 2 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) d z .
8: 22.9 Cyclic Identities
§22.9(iii) Typical Identities of Rank 3
22.9.22 s 1 , 3 ( 2 ) c 1 , 3 ( 2 ) d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + s 2 , 3 ( 2 ) c 2 , 3 ( 2 ) d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) + s 3 , 3 ( 2 ) c 3 , 3 ( 2 ) d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) = κ 2 + k 2 1 1 κ 2 ( s 1 , 3 ( 2 ) c 1 , 3 ( 2 ) + s 2 , 3 ( 2 ) c 2 , 3 ( 2 ) + s 3 , 3 ( 2 ) c 3 , 3 ( 2 ) ) ,
22.9.23 s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) + s 3 , 3 ( 4 ) d 3 , 3 ( 4 ) c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) = κ 2 1 κ 2 ( s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) ) .
9: 22.14 Integrals
22.14.1 sn ( x , k ) d x = k 1 ln ( dn ( x , k ) k cn ( x , k ) ) ,
22.14.2 cn ( x , k ) d x = k 1 Arccos ( dn ( x , k ) ) ,
For additional results see Gradshteyn and Ryzhik (2000, pp. 619–622) and Lawden (1989, Chapter 3). …
10: 22.3 Graphics
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. …
See accompanying text
Figure 22.3.2: k = 0.7 , 3 K x 3 K , K = 1.8456 . For cn ( x , k ) the curve for k = 1 / 2 = 0.70710 is a boundary between the curves that have an inflection point in the interval 0 x 2 K ( k ) , and its translates, and those that do not; see Walker (1996, p. 146). Magnify
sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
See accompanying text
Figure 22.3.14: cn ( x , k ) for k = 1 e n , n = 0 to 20, 5 π x 5 π . Magnify 3D Help
See accompanying text
Figure 22.3.17: cn ( x + i y , k ) for k = 0.99 , 3 K x 3 K , 0 y 4 K . … Magnify 3D Help