About the Project

【亚博体育qee9.com】达人捕鱼游戏在线玩7sE

AdvancedHelp

The term"qee9.com" was not found.Possible alternative term: "becom".

(0.003 seconds)

1—10 of 200 matching pages

1: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • Stratton et al. (1941) includes b n , b n , and the corresponding Fourier coefficients for Se n ( c , x ) and So n ( c , x ) for n = 0 or 1 ( 1 ) 4 , c = 0 ( .1 or .2 ) 4.5 . Precision is mostly 5S. Notation: c = 2 q , b n = a n + 2 q , b n = b n + 2 q , and for Se n ( c , x ) , So n ( c , x ) see §28.1.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • Ince (1932) includes the first zero for ce n , se n for n = 2 ( 1 ) 5 or 6 , q = 0 ( 1 ) 10 ( 2 ) 40 ; 4D. This reference also gives zeros of the first derivatives, together with expansions for small q .

  • 2: 7 Error Functions, Dawson’s and Fresnel Integrals
    Chapter 7 Error Functions, Dawson’s and Fresnel Integrals
    3: 28.6 Expansions for Small q
    Leading terms of the of the power series for m = 7 , 8 , 9 , are: …
    §28.6(ii) Functions ce n and se n
    28.6.23 se 1 ( z , q ) = sin z 1 8 q sin 3 z + 1 128 q 2 ( 2 3 sin 5 z + 2 sin 3 z sin z ) 1 1024 q 3 ( 1 9 sin 7 z + 8 9 sin 5 z 1 3 sin 3 z 2 sin z ) + ,
    28.6.25 se 2 ( z , q ) = sin 2 z 1 12 q sin 4 z + 1 128 q 2 ( 1 3 sin 6 z 4 9 sin 2 z ) + .
    For the corresponding expansions of se m ( z , q ) for m = 3 , 4 , 5 , change cos to sin everywhere in (28.6.26). …
    4: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    se m + 1 ( x , h 2 ) sin x = S ^ m ( U m ( ξ ) V m ( ξ ) ) ,
    se m + 1 ( x , h 2 ) se m + 1 ( 0 , h 2 ) = 2 m ( 1 / 2 ) τ m + 1 ( W m + ( x ) ( P m ( x ) Q m ( x ) ) W m ( x ) ( P m ( x ) + Q m ( x ) ) ) ,
    σ m 1 + s 2 3 h + 4 s 2 + 3 2 7 h 2 + 19 s 3 + 59 s 2 11 h 3 + ,
    τ m + 1 2 h 1 4 s 2 s 2 + 3 2 6 h 7 s 3 + 47 s 2 10 h 2 ,
    5: 28.1 Special Notation
    ce ν ( z , q ) , se ν ( z , q ) , fe n ( z , q ) , ge n ( z , q ) , me ν ( z , q ) ,
    Se n ( s , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
    So n ( s , z ) = se n ( z , q ) se n ( 0 , q ) .
    Se n ( c , z ) = ce n ( z , q ) ce n ( 0 , q ) ,
    So n ( c , z ) = se n ( z , q ) se n ( 0 , q ) .
    6: 28.9 Zeros
    For real q each of the functions ce 2 n ( z , q ) , se 2 n + 1 ( z , q ) , ce 2 n + 1 ( z , q ) , and se 2 n + 2 ( z , q ) has exactly n zeros in 0 < z < 1 2 π . …For q the zeros of ce 2 n ( z , q ) and se 2 n + 1 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n ( q 1 / 4 ( π 2 z ) ) , and the zeros of ce 2 n + 1 ( z , q ) and se 2 n + 2 ( z , q ) approach asymptotically the zeros of 𝐻𝑒 2 n + 1 ( q 1 / 4 ( π 2 z ) ) . …Furthermore, for q > 0 ce m ( z , q ) and se m ( z , q ) also have purely imaginary zeros that correspond uniquely to the purely imaginary z -zeros of J m ( 2 q cos z ) 10.21(i)), and they are asymptotically equal as q 0 and | z | . …
    7: 28.3 Graphics
    See accompanying text
    Figure 28.3.5: se 2 n + 1 ( x , 1 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.6: se 2 n + 1 ( x , 10 ) for 0 x π / 2 , n = 0 , 1 , 2 , 3 . Magnify
    See accompanying text
    Figure 28.3.7: se 2 n ( x , 1 ) for 0 x π / 2 , n = 1 , 2 , 3 , 4 . Magnify
    See accompanying text
    Figure 28.3.8: se 2 n ( x , 10 ) for 0 x π / 2 , n = 1 , 2 , 3 , 4 . Magnify
    See accompanying text
    Figure 28.3.10: se 1 ( x , q ) for 0 x 2 π , 0 q 10 . Magnify 3D Help
    8: 28.11 Expansions in Series of Mathieu Functions
    28.11.1 f ( z ) = α 0 ce 0 ( z , q ) + n = 1 ( α n ce n ( z , q ) + β n se n ( z , q ) ) ,
    β n = 1 π 0 2 π f ( x ) se n ( x , q ) d x .
    28.11.6 sin ( 2 m + 1 ) z = n = 0 B 2 m + 1 2 n + 1 ( q ) se 2 n + 1 ( z , q ) ,
    28.11.7 sin ( 2 m + 2 ) z = n = 0 B 2 m + 2 2 n + 2 ( q ) se 2 n + 2 ( z , q ) .
    9: Bibliography P
  • K. A. Paciorek (1970) Algorithm 385: Exponential integral Ei ( x ) . Comm. ACM 13 (7), pp. 446–447.
  • R. B. Paris (2013) Exponentially small expansions of the confluent hypergeometric functions. Appl. Math. Sci. (Ruse) 7 (133-136), pp. 6601–6609.
  • T. Pearcey (1946) The structure of an electromagnetic field in the neighbourhood of a cusp of a caustic. Philos. Mag. (7) 37, pp. 311–317.
  • G. Petiau (1955) La Théorie des Fonctions de Bessel Exposée en vue de ses Applications à la Physique Mathématique. Centre National de la Recherche Scientifique, Paris (French).
  • J. L. Powell (1947) Recurrence formulas for Coulomb wave functions. Physical Rev. (2) 72 (7), pp. 626–627.
  • 10: 23 Weierstrass Elliptic and Modular
    Functions