About the Project

zetaő–Askey polynomials

AdvancedHelp

(0.002 seconds)

1—10 of 12 matching pages

1: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • CAOP (website) Work Group of Computational Mathematics, University of Kassel, Germany.
  • B. C. Carlson (1985) The hypergeometric function and the R -function near their branch points. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
  • L. Chihara (1987) On the zeros of the Askey-Wilson polynomials, with applications to coding theory. SIAM J. Math. Anal. 18 (1), pp. 191–207.
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • 2: Bibliography D
  • N. G. de Bruijn (1937) Integralen voor de ζ -functie van Riemann. Mathematica (Zutphen) B5, pp. 170–180 (Dutch).
  • H. Delange (1988) On the real roots of Euler polynomials. Monatsh. Math. 106 (2), pp. 115–138.
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • T. M. Dunster (2006) Uniform asymptotic approximations for incomplete Riemann zeta functions. J. Comput. Appl. Math. 190 (1-2), pp. 339–353.
  • L. Durand (1975) Nicholson-type Integrals for Products of Gegenbauer Functions and Related Topics. In Theory and Application of Special Functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975), R. A. Askey (Ed.), pp. 353–374. Math. Res. Center, Univ. Wisconsin, Publ. No. 35.
  • 3: Bibliography K
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • T. H. Koornwinder (1975c) Two-variable Analogues of the Classical Orthogonal Polynomials. In Theory and Application of Special Functions, R. A. Askey (Ed.), pp. 435–495.
  • T. H. Koornwinder (1992) Askey-Wilson Polynomials for Root Systems of Type B C . In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math., Vol. 138, pp. 189–204.
  • T. H. Koornwinder (2007b) The structure relation for Askey-Wilson polynomials. J. Comput. Appl. Math. 207 (2), pp. 214–226.
  • T. H. Koornwinder (2012) Askey-Wilson polynomial. Scholarpedia 7 (7), pp. 7761.
  • 4: Bibliography I
  • A. Iserles, P. E. Koch, S. P. Nørsett, and J. M. Sanz-Serna (1991) On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65 (2), pp. 151–175.
  • M. E. H. Ismail and D. R. Masson (1994) q -Hermite polynomials, biorthogonal rational functions, and q -beta integrals. Trans. Amer. Math. Soc. 346 (1), pp. 63–116.
  • M. E. H. Ismail (1986) Asymptotics of the Askey-Wilson and q -Jacobi polynomials. SIAM J. Math. Anal. 17 (6), pp. 1475–1482.
  • M. E. H. Ismail (2009) Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, Vol. 98, Cambridge University Press, Cambridge.
  • A. Ivić (1985) The Riemann Zeta-Function. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • 5: Bibliography
  • R. Askey and G. Gasper (1976) Positive Jacobi polynomial sums. II. Amer. J. Math. 98 (3), pp. 709–737.
  • R. Askey and B. Razban (1972) An integral for Jacobi polynomials. Simon Stevin 46, pp. 165–169.
  • R. Askey and J. Wilson (1985) Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Mem. Amer. Math. Soc. 54 (319), pp. iv+55.
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • R. Askey (1985) Continuous Hahn polynomials. J. Phys. A 18 (16), pp. L1017–L1019.
  • 6: Bibliography H
  • L. Habsieger (1988) Une q -intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ ( s ) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • E. Hahn (1980) Asymptotik bei Jacobi-Polynomen und Jacobi-Funktionen. Math. Z. 171 (3), pp. 201–226 (German).
  • C. B. Haselgrove and J. C. P. Miller (1960) Tables of the Riemann Zeta Function. Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • 7: Bibliography B
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • B. C. Berndt (1972) On the Hurwitz zeta-function. Rocky Mountain J. Math. 2 (1), pp. 151–157.
  • B. C. Berndt (1989) Ramanujan’s Notebooks. Part II. Springer-Verlag, New York.
  • B. C. Berndt (1991) Ramanujan’s Notebooks. Part III. Springer-Verlag, Berlin-New York.
  • M. V. Berry (1995) The Riemann-Siegel expansion for the zeta function: High orders and remainders. Proc. Roy. Soc. London Ser. A 450, pp. 439–462.
  • 8: Bibliography R
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • M. Rahman (2001) The Associated Classical Orthogonal Polynomials. In Special Functions 2000: Current Perspective and Future Directions (Tempe, AZ), NATO Sci. Ser. II Math. Phys. Chem., Vol. 30, pp. 255–279.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • S. Roman (1984) The umbral calculus. Pure and Applied Mathematics, Vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York.
  • 9: Bibliography M
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • D. R. Masson (1991) Associated Wilson polynomials. Constr. Approx. 7 (4), pp. 521–534.
  • J. Miller and V. S. Adamchik (1998) Derivatives of the Hurwitz zeta function for rational arguments. J. Comput. Appl. Math. 100 (2), pp. 201–206.
  • D. S. Mitrinović (1970) Analytic Inequalities. Springer-Verlag, New York.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 10: 18.35 Pollaczek Polynomials
    §18.35 Pollaczek Polynomials
    There are 3 types of Pollaczek polynomials: …The three types of Pollaczek polynomials were successively introduced in Pollaczek (1949a, b, 1950), see also Erdélyi et al. (1953b, p.219) and, for type 1 and 2, Szegö (1950) and Askey (1982b). … For the monic polynomialsSee Szegő (1975, Appendix, §§ 1–5), Askey (1982b), and Ismail (2009, §§ 5.4–5.5) for further results on type 2 Pollaczek polynomials. …