About the Project

zeros of polynomials

AdvancedHelp

(0.004 seconds)

11—20 of 80 matching pages

11: 3.5 Quadrature
Table 3.5.2: Nodes and weights for the 10-point Gauss–Legendre formula.
± x k w k
Table 3.5.3: Nodes and weights for the 20-point Gauss–Legendre formula.
± x k w k
Table 3.5.6: Nodes and weights for the 5-point Gauss–Laguerre formula.
x k w k
The p n ( x ) are the monic Hermite polynomials H n ( x ) 18.3). …
12: Bibliography Q
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • 13: 18.29 Asymptotic Approximations for q -Hahn and Askey–Wilson Classes
    For a uniform asymptotic expansion of the Stieltjes–Wigert polynomials, see Wang and Wong (2006). For asymptotic approximations to the largest zeros of the q -Laguerre and continuous q 1 -Hermite polynomials see Chen and Ismail (1998).
    14: 28.31 Equations of Whittaker–Hill and Ince
    The normalization is given by …
    15: 18.3 Definitions
    In addition to the orthogonal property given by Table 18.3.1, the Chebyshev polynomials T n ( x ) , n = 0 , 1 , , N , are orthogonal on the discrete point set comprising the zeros x N + 1 , n , n = 1 , 2 , , N + 1 , of T N + 1 ( x ) : …
    16: Bibliography I
  • M. E. H. Ismail (2000a) An electrostatics model for zeros of general orthogonal polynomials. Pacific J. Math. 193 (2), pp. 355–369.
  • M. E. H. Ismail (2000b) More on electrostatic models for zeros of orthogonal polynomials. Numer. Funct. Anal. Optim. 21 (1-2), pp. 191–204.
  • M. E. H. Ismail and X. Li (1992) Bound on the extreme zeros of orthogonal polynomials. Proc. Amer. Math. Soc. 115 (1), pp. 131–140.
  • 17: 18.36 Miscellaneous Polynomials
    EOP’s are non-classical in that not only are certain polynomial orders missing, but, also, not all EOP polynomial zeros are within the integration range of their generating measure, and EOP-orthogonality properties do not allow development of Gaussian-type quadratures. …
    18: 28.34 Methods of Computation
  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • 19: Bibliography D
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a) On the zeros of generalized Bessel polynomials. I. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 1–13.
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981b) On the zeros of generalized Bessel polynomials. II. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 14–25.
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • D. K. Dimitrov and G. P. Nikolov (2010) Sharp bounds for the extreme zeros of classical orthogonal polynomials. J. Approx. Theory 162 (10), pp. 1793–1804.
  • 20: Bibliography V
  • H. Volkmer (2008) Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials. J. Comput. Appl. Math. 213 (2), pp. 488–500.