zeros of polynomials
(0.003 seconds)
1—10 of 85 matching pages
1: 24.12 Zeros
…
►
§24.12(i) Bernoulli Polynomials: Real Zeros
… ►Let be the total number of real zeros of . … ►§24.12(ii) Euler Polynomials: Real Zeros
… ►§24.12(iii) Complex Zeros
… ►§24.12(iv) Multiple Zeros
…2: 18.16 Zeros
…
►
§18.16(ii) Jacobi
… ►Inequalities
… ►§18.16(iii) Ultraspherical, Legendre and Chebyshev
… ►§18.16(iv) Laguerre
… ►Asymptotic Behavior
…3: 29.20 Methods of Computation
…
►A fourth method is by asymptotic approximations by zeros of orthogonal polynomials of increasing degree.
…
►
§29.20(iii) Zeros
►Zeros of Lamé polynomials can be computed by solving the system of equations (29.12.13) by employing Newton’s method; see §3.8(ii). …4: 1.11 Zeros of Polynomials
§1.11 Zeros of Polynomials
… ►Horner’s Scheme
… ►Extended Horner Scheme
… ►§1.11(ii) Elementary Properties
… ►Descartes’ Rule of Signs
…5: 31.15 Stieltjes Polynomials
…
►
§31.15(ii) Zeros
►If are the zeros of an th degree Stieltjes polynomial , then every zero is either one of the parameters or a solution of the system of equations … ►If is a zero of the Van Vleck polynomial , corresponding to an th degree Stieltjes polynomial , and are the zeros of (the derivative of ), then is either a zero of or a solution of the equation … ► … ►See Marden (1966), Alam (1979), and Al-Rashed and Zaheer (1985) for further results on the location of the zeros of Stieltjes and Van Vleck polynomials. …6: 3.8 Nonlinear Equations
…
►
§3.8(iv) Zeros of Polynomials
… ►Bairstow’s Method
… ►For further information on the computation of zeros of polynomials see McNamee (2007). … ►§3.8(vi) Conditioning of Zeros
… ►For moderate or large values of it is not uncommon for the magnitude of the right-hand side of (3.8.14) to be very large compared with unity, signifying that the computation of zeros of polynomials is often an ill-posed problem. …7: 18.2 General Orthogonal Polynomials
…
►
§18.2(vi) Zeros
…8: 28.9 Zeros
…
►For the zeros of and approach asymptotically the zeros of , and the zeros of and approach asymptotically the zeros of .
…
9: 29.12 Definitions
…
►In consequence they are doubly-periodic meromorphic functions of .
►The superscript on the left-hand sides of (29.12.1)–(29.12.8) agrees with the number of -zeros of each Lamé polynomial in the interval , while is the number of -zeros in the open line segment from to .
…
►The polynomial
is of degree and has
zeros (all simple) in and
zeros (all simple) in .
…
►Let denote the zeros of the polynomial
in (29.12.9) arranged according to
…
►
29.12.13
.
…
10: 18.24 Hahn Class: Asymptotic Approximations
…
►Asymptotic approximations are also provided for the zeros of in various cases depending on the values of and .
…
►For asymptotic approximations for the zeros of in terms of zeros of (§9.9(i)), see Jin and Wong (1999) and Khwaja and Olde Daalhuis (2012).
…
►Corresponding approximations are included for the zeros of .
…