About the Project

zero potential

AdvancedHelp

(0.002 seconds)

1—10 of 16 matching pages

1: 33.22 Particle Scattering and Atomic and Molecular Spectra
At positive energies E > 0 , ρ 0 , and:
Attractive potentials: Z 1 Z 2 < 0 , η < 0 .
Zero potential ( V = 0 ): Z 1 Z 2 = 0 , η = 0 .
R = m e c α 2 / ( 2 ) .
Attractive potentials: Z 1 Z 2 < 0 , r > 0 .
Zero potential ( V = 0 ): Z 1 Z 2 = 0 , r = 0 .
Attractive potentials: Z 1 Z 2 < 0 , κ < 0 .
Zero potential ( V = 0 ): Z 1 Z 2 = 0 , κ = 0 .
2: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
Unlike in the example in the paragraph above, in 3-dimensions a “dip below zero, or a potential well” in V ( r ) does not always correspond to the existence of a discrete part of the spectrum. …
3: Bibliography Q
  • W. Qiu and R. Wong (2004) Asymptotic expansion of the Krawtchouk polynomials and their zeros. Comput. Methods Funct. Theory 4 (1), pp. 189–226.
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • C. Quesne (2011) Higher-Order SUSY, Exactly Solvable Potentials, and Exceptional Orthogonal Polynomials. Modern Physics Letters A 26, pp. 1843–1852.
  • 4: Bibliography D
  • L. Dekar, L. Chetouani, and T. F. Hammann (1999) Wave function for smooth potential and mass step. Phys. Rev. A 59 (1), pp. 107–112.
  • H. Delange (1991) Sur les zéros réels des polynômes de Bernoulli. Ann. Inst. Fourier (Grenoble) 41 (2), pp. 267–309 (French).
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • R. Dutt, A. Khare, and U. P. Sukhatme (1988) Supersymmetry, shape invariance, and exactly solvable potentials. Amer. J. Phys. 56, pp. 163–168.
  • 5: 18.39 Applications in the Physical Sciences
    defines the potential for a symmetric restoring force k x for displacements from x = 0 . … argument b) The Morse Oscillator … c) A Rational SUSY Potential argument The Schrödinger equation with potentialNow use spherical coordinates (1.5.16) with r instead of ρ , and assume the potential V to be radial. …
    6: Bibliography H
  • R. L. Hall, N. Saad, and K. D. Sen (2010) Soft-core Coulomb potentials and Heun’s differential equation. J. Math. Phys. 51 (2), pp. Art. ID 022107, 19 pages.
  • V. B. Headley and V. K. Barwell (1975) On the distribution of the zeros of generalized Airy functions. Math. Comp. 29 (131), pp. 863–877.
  • P. Henrici (1974) Applied and Computational Complex Analysis. Vol. 1: Power Series—Integration—Conformal Mapping—Location of Zeros. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York.
  • D. R. Herrick and S. O’Connor (1998) Inverse virial symmetry of diatomic potential curves. J. Chem. Phys. 109 (1), pp. 11–19.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • 7: Bibliography B
  • P. Baldwin (1985) Zeros of generalized Airy functions. Mathematika 32 (1), pp. 104–117.
  • E. Bank and M. E. H. Ismail (1985) The attractive Coulomb potential polynomials. Constr. Approx. 1 (2), pp. 103–119.
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • A. Bhattacharjie and E. C. G. Sudarshan (1962) A class of solvable potentials. Nuovo Cimento (10) 25, pp. 864–879.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.
  • 8: Bibliography G
  • L. Gatteschi (1987) New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18 (6), pp. 1549–1562.
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • L. Gatteschi (2002) Asymptotics and bounds for the zeros of Laguerre polynomials: A survey. J. Comput. Appl. Math. 144 (1-2), pp. 7–27.
  • A. Gil, J. Segura, and N. M. Temme (2003c) On the zeros of the Scorer functions. J. Approx. Theory 120 (2), pp. 253–266.
  • R. G. Gordon (1970) Constructing wavefunctions for nonlocal potentials. J. Chem. Phys. 52, pp. 6211–6217.
  • 9: Bibliography E
  • C. Eckart (1930) The penetration of a potential barrier by electrons. Phys. Rev. 35 (11), pp. 1303–1309.
  • M. Eichler and D. Zagier (1982) On the zeros of the Weierstrass -function. Math. Ann. 258 (4), pp. 399–407.
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • Á. Elbert and A. Laforgia (1994) Interlacing properties of the zeros of Bessel functions. Atti Sem. Mat. Fis. Univ. Modena XLII (2), pp. 525–529.
  • Á. Elbert and A. Laforgia (1997) An upper bound for the zeros of the derivative of Bessel functions. Rend. Circ. Mat. Palermo (2) 46 (1), pp. 123–130.
  • 10: Bibliography S
  • M. J. Seaton (2002a) Coulomb functions for attractive and repulsive potentials and for positive and negative energies. Comput. Phys. Comm. 146 (2), pp. 225–249.
  • J. Segura (2001) Bounds on differences of adjacent zeros of Bessel functions and iterative relations between consecutive zeros. Math. Comp. 70 (235), pp. 1205–1220.
  • B. Simon (1973) Resonances in n -body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory. Ann. of Math. (2) 97, pp. 247–274.
  • I. N. Sneddon (1966) Mixed Boundary Value Problems in Potential Theory. North-Holland Publishing Co., Amsterdam.
  • C. Snow (1952) Hypergeometric and Legendre Functions with Applications to Integral Equations of Potential Theory. National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C..