About the Project

with respect to summation

AdvancedHelp

(0.003 seconds)

11—17 of 17 matching pages

11: 18.20 Hahn Class: Explicit Representations
§18.20(ii) Hypergeometric Function and Generalized Hypergeometric Functions
Here we use as convention for (16.2.1) with b q = N , a 1 = n , and n = 0 , 1 , , N that the summation on the right-hand side ends at k = n . …(For symmetry properties of p n ( x ; a , b , a ¯ , b ¯ ) with respect to a , b , a ¯ , b ¯ see Andrews et al. (1999, Corollary 3.3.4).) …
12: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • G. Gasper (1981) Orthogonality of certain functions with respect to complex valued weights. Canad. J. Math. 33 (5), pp. 1261–1270.
  • W. Gautschi (1984) Questions of Numerical Condition Related to Polynomials. In Studies in Numerical Analysis, G. H. Golub (Ed.), pp. 140–177.
  • J. J. Gray (2000) Linear Differential Equations and Group Theory from Riemann to Poincaré. 2nd edition, Birkhäuser Boston Inc., Boston, MA.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 13: 18.27 q -Hahn Class
    For (17.4.1) with b s = q N , a 0 = q m , and m = 0 , 1 , , N we will use the convention that the summation on the right-hand side ends at n = m . … These families depend on further parameters, in addition to q . … Thus in addition to a relation of the form (18.27.2), such systems may also satisfy orthogonality relations with respect to a continuous weight function on some interval. …
    From Big q -Jacobi to Jacobi
    From Big q -Jacobi to Little q -Jacobi
    14: 34.7 Basic Properties: 9 j Symbol
    The 9 j symbol has symmetry properties with respect to permutation of columns, permutation of rows, and transposition of rows and columns; these relate 72 independent 9 j symbols. …
    34.7.4 ( j 13 j 23 j 33 m 13 m 23 m 33 ) { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = m r 1 , m r 2 , r = 1 , 2 , 3 ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) .
    15: Bibliography
  • R. W. Abernathy and R. P. Smith (1993) Algorithm 724: Program to calculate F-percentiles. ACM Trans. Math. Software 19 (4), pp. 481–483.
  • G. B. Airy (1849) Supplement to a paper “On the intensity of light in the neighbourhood of a caustic”. Trans. Camb. Phil. Soc. 8, pp. 595–599.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • A. Apelblat (1989) Derivatives and integrals with respect to the order of the Struve functions 𝐇 ν ( x ) and 𝐋 ν ( x ) . J. Math. Anal. Appl. 137 (1), pp. 17–36.
  • A. Apelblat (1991) Integral representation of Kelvin functions and their derivatives with respect to the order. Z. Angew. Math. Phys. 42 (5), pp. 708–714.
  • 16: 18.17 Integrals
    For addition formulas corresponding to (18.17.5) and (18.17.6) see (18.18.8) and (18.18.9), respectively. … Formulas (18.17.9), (18.17.10) and (18.17.11) are fractional generalizations of n -th derivative formulas which are, after substitution of (18.5.7), special cases of (15.5.4), (15.5.5) and (15.5.3), respectively. … Formulas (18.17.14) and (18.17.15) are fractional generalizations of n -th derivative formulas which are, after substitution of (13.6.19), special cases of (13.3.18) and (13.3.20), respectively. … Formulas (18.17.21_2) and (18.17.21_3) are respectively the limit case c 1 2 and the special case c = 1 of (18.17.21_1). … Formulas (18.17.45) and (18.17.49) are integrated forms of the linearization formulas (18.18.22) and (18.18.23), respectively. …
    17: 2.10 Sums and Sequences
  • (a)

    On the strip a z n , f ( z ) is analytic in its interior, f ( 2 m ) ( z ) is continuous on its closure, and f ( z ) = o ( e 2 π | z | ) as z ± , uniformly with respect to z [ a , n ] .

  • In the present example it leads to
    §2.10(ii) Summation by Parts
    The formula for summation by parts is … where 𝒞 1 , 𝒞 2 denote respectively the upper and lower halves of 𝒞 . …