About the Project

with%20respect%20to%20summation

AdvancedHelp

(0.005 seconds)

1—10 of 881 matching pages

1: 20 Theta Functions
Chapter 20 Theta Functions
2: 8 Incomplete Gamma and Related
Functions
3: 27.15 Chinese Remainder Theorem
This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. Because each residue has no more than five digits, the arithmetic can be performed efficiently on these residues with respect to each of the moduli, yielding answers a 1 ( mod m 1 ) , a 2 ( mod m 2 ) , a 3 ( mod m 3 ) , and a 4 ( mod m 4 ) , where each a j has no more than five digits. These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
4: William P. Reinhardt
His undergraduate and graduate degrees are from the University of California at Berkeley and Harvard University, respectively. …Reinhardt is a frequent visitor to the NIST Physics Laboratory in Gaithersburg, and to the Joint Quantum Institute (JQI) and Institute for Physical Sciences and Technology (ISTP) at the University of Maryland. … He has recently carried out research on non-linear dynamics of Bose–Einstein condensates that served to motivate his interest in elliptic functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    5: 24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. In Wagstaff (2002) these results are extended to n = 60 ( 2 ) 152 and n = 40 ( 2 ) 88 , respectively, with further complete and partial factorizations listed up to n = 300 and n = 200 , respectively. …
    6: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Pearson (1965) tabulates the function I ( u , p ) ( = P ( p + 1 , u ) ) for p = 1 ( .05 ) 0 ( .1 ) 5 ( .2 ) 50 , u = 0 ( .1 ) u p to 7D, where I ( u , u p ) rounds off to 1 to 7D; also I ( u , p ) for p = 0.75 ( .01 ) 1 , u = 0 ( .1 ) 6 to 5D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 7: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • Zhang and Jin (1996, p. 323) tabulates the first 20 real zeros of ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , 8D.

  • 8: 28 Mathieu Functions and Hill’s Equation
    9: 36 Integrals with Coalescing Saddles
    10: 23 Weierstrass Elliptic and Modular
    Functions