About the Project

with%20imaginary%20periods

AdvancedHelp

(0.002 seconds)

3 matching pages

1: Bibliography I
  • E. L. Ince (1940a) The periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 47–63.
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.
  • M. E. H. Ismail and M. E. Muldoon (1995) Bounds for the small real and purely imaginary zeros of Bessel and related functions. Methods Appl. Anal. 2 (1), pp. 1–21.
  • 2: 22.3 Graphics
    The period diverges logarithmically as k 1 ; see §19.12. …
    See accompanying text
    Figure 22.3.26: Density plot of | sn ( 5 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
    See accompanying text
    Figure 22.3.27: Density plot of | sn ( 10 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
    See accompanying text
    Figure 22.3.28: Density plot of | sn ( 20 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
    See accompanying text
    Figure 22.3.29: Density plot of | sn ( 30 , k ) | as a function of complex k 2 , 10 ( k 2 ) 20 , 10 ( k 2 ) 10 . … Magnify
    3: 3.4 Differentiation
    B 2 5 = 1 120 ( 6 10 t 15 t 2 + 20 t 3 5 t 4 ) ,
    B 3 6 = 1 720 ( 12 8 t 45 t 2 + 20 t 3 + 15 t 4 6 t 5 ) ,
    B 2 6 = 1 60 ( 9 9 t 30 t 2 + 20 t 3 + 5 t 4 3 t 5 ) ,
    B 2 6 = 1 60 ( 9 + 9 t 30 t 2 20 t 3 + 5 t 4 + 3 t 5 ) ,
    As explained in §§3.5(i) and 3.5(ix) the composite trapezoidal rule can be very efficient for computing integrals with analytic periodic integrands. …