About the Project

with two variables

AdvancedHelp

(0.003 seconds)

1—10 of 181 matching pages

1: 37.2 General Orthogonal Polynomials of Two Variables
§37.2 General Orthogonal Polynomials of Two Variables
§37.2(iv) Zeros
2: 37.10 Other Orthogonal Polynomials of Two Variables
§37.10 Other Orthogonal Polynomials of Two Variables
§37.10(ii) Orthogonal Polynomials on an Annulus
§37.10(iii) Bernstein–Szegő Polynomials of Two Variables
§37.10(iv) Hahn polynomials of Two Variables
As an example we give the Hahn polynomials of two variables: …
3: 37.20 Mathematical Applications
Numerical Integration and Interpolation
4: 37.1 Notation
x , y real variables.
P , Q polynomials of two variables.
5: 37.4 Disk with Weight Function ( 1 x 2 y 2 ) α
§37.4 Disk with Weight Function ( 1 x 2 y 2 ) α
37.4.2 W α ( x , y ) = ( 1 x 2 y 2 ) α , α > 1 ,
37.4.3 f , g α = α + 1 π 𝔻 f ( x , y ) g ( x , y ) W α ( x , y ) d x d y , α > 1 ,
37.4.28 [ ( 1 x 2 ) D x x 2 x y D x y + ( 1 y 2 ) D y y ( 2 α + 3 ) ( x D x + y D y ) ] u ( x , y ) = n ( n + 2 α + 2 ) u ( x , y ) , u 𝒱 n α .
6: 37.7 Parabolic Biangular Region with Weight Function ( 1 x ) α ( x y 2 ) β
§37.7 Parabolic Biangular Region with Weight Function ( 1 x ) α ( x y 2 ) β
37.7.4 P k , n α , β ( x , y ) = m = 0 n k j = 0 1 2 k d m , j x n k m + j y k 2 j .
37.7.12 ( L + n ( n + α + β + 3 2 ) ) P 2 k , n + k α , β ( x , y ) = 0 ,
37.7.13 ( L + ( n + 1 2 ) ( n + α + β + 2 ) ) P 2 k + 1 , n + k + 1 α , β ( x , y ) = 0 ,
37.7.23 x D x x + 1 2 D y y + ( α + 1 x ) D x y D y .
7: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • 8: 37.3 Triangular Region with Weight Function x α y β ( 1 x y ) γ
    §37.3(i) Orthogonal Decomposition
    37.3.1 W α , β , γ ( x , y ) = x α y β ( 1 x y ) γ
    37.3.2 f , g α , β , γ = Γ ( α + β + γ + 3 ) Γ ( α + 1 ) Γ ( β + 1 ) Γ ( γ + 1 ) f ( x , y ) g ( x , y ) W α , β , γ ( x , y ) d x d y , α , β , γ > 1 ,
    37.3.15 W α , β , γ ( x , y ) 1 ( D x [ W α + 1 , β , γ + 1 ( x , y ) D x u ( x , y ) ] + D y [ W α , β + 1 , γ + 1 ( x , y ) D y u ( x , y ) ] + D z [ W α + 1 , β + 1 , γ ( x , y ) D z u ( x , y ) ] ) = n ( n + α + β + γ + 2 ) u ( x , y ) , u 𝒱 n ,
    9: null
    error generating summary
    10: 19.21 Connection Formulas
    19.21.1 R F ( 0 , z + 1 , z ) R D ( 0 , z + 1 , 1 ) + R D ( 0 , z + 1 , z ) R F ( 0 , z + 1 , 1 ) = 3 π / ( 2 z ) , z ( , 0 ] .
    19.21.2 3 R F ( 0 , y , z ) = z R D ( 0 , y , z ) + y R D ( 0 , z , y ) .
    19.21.3 6 R G ( 0 , y , z ) = y z ( R D ( 0 , y , z ) + R D ( 0 , z , y ) ) = 3 z R F ( 0 , y , z ) + z ( y z ) R D ( 0 , y , z ) .
    19.21.8 R D ( y , z , x ) + R D ( z , x , y ) + R D ( x , y , z ) = 3 x 1 / 2 y 1 / 2 z 1 / 2 ,
    19.21.9 x R D ( y , z , x ) + y R D ( z , x , y ) + z R D ( x , y , z ) = 3 R F ( x , y , z ) .