with imaginary periods
(0.001 seconds)
1—10 of 40 matching pages
1: 29.10 Lamé Functions with Imaginary Periods
§29.10 Lamé Functions with Imaginary Periods
… ►The first and the fourth functions have period ; the second and the third have period . …2: 25.13 Periodic Zeta Function
…
►The notation is used for the polylogarithm with real:
►
25.13.1
…
►
25.13.2
, ,
►
25.13.3
if ; if .
3: 4.28 Definitions and Periodicity
4: 22.4 Periods, Poles, and Zeros
…
►This half-period will be plus or minus a member of the triple ; the other two members of this triple are quarter periods of .
…
5: 4.2 Definitions
…
►It has period
:
…
6: 28.31 Equations of Whittaker–Hill and Ince
…
►Formal -periodic solutions can be constructed as Fourier series; compare §28.4:
…
►where when , and when .
…
►For , the functions , behave asymptotically as multiples of as .
All other periodic solutions behave as multiples of .
…
►All other periodic solutions behave as multiples of .
7: 27.10 Periodic Number-Theoretic Functions
8: 20.13 Physical Applications
…
►The functions , , provide periodic solutions of the partial differential equation
…with .
►For , with real, (20.13.1) takes the form of a real-time diffusion equation
…Thus the classical theta functions are “periodized”, or “anti-periodized”, Gaussians; see Bellman (1961, pp. 18, 19).
…
►In the singular limit , the functions , , become integral kernels of Feynman path integrals (distribution-valued Green’s functions); see Schulman (1981, pp. 194–195).
…