About the Project
NIST

with elementary kernels

AdvancedHelp

(0.002 seconds)

5 matching pages

1: 28.10 Integral Equations
§28.10(i) Equations with Elementary Kernels
2: 28.28 Integrals, Integral Representations, and Integral Equations
§28.28(i) Equations with Elementary Kernels
3: Bibliography B
  • B. L. J. Braaksma and B. Meulenbeld (1967) Integral transforms with generalized Legendre functions as kernels. Compositio Math. 18, pp. 235–287.
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • 4: Bibliography M
  • T. M. MacRobert (1967) Spherical Harmonics. An Elementary Treatise on Harmonic Functions with Applications. 3rd edition, International Series of Monographs in Pure and Applied Mathematics, Vol. 98, Pergamon Press, Oxford.
  • S. M. Markov (1981) On the interval computation of elementary functions. C. R. Acad. Bulgare Sci. 34 (3), pp. 319–322.
  • X. Merrheim (1994) The computation of elementary functions in radix 2 p . Computing 53 (3-4), pp. 219–232.
  • M. E. Muldoon (1970) Singular integrals whose kernels involve certain Sturm-Liouville functions. I. J. Math. Mech. 19 (10), pp. 855–873.
  • J. Muller (1997) Elementary Functions: Algorithms and Implementation. Birkhäuser Boston Inc., Boston, MA.
  • 5: Bibliography S
  • SLATEC (free Fortran library)
  • D. M. Smith (1989) Efficient multiple-precision evaluation of elementary functions. Math. Comp. 52 (185), pp. 131–134.
  • K. Soni (1980) Exact error terms in the asymptotic expansion of a class of integral transforms. I. Oscillatory kernels. SIAM J. Math. Anal. 11 (5), pp. 828–841.