About the Project

wave%20functions

AdvancedHelp

(0.004 seconds)

1—10 of 19 matching pages

1: 10.73 Physical Applications
This equation governs problems in acoustic and electromagnetic wave propagation. … … More recently, Bessel functions appear in the inverse problem in wave propagation, with applications in medicine, astronomy, and acoustic imaging. …
§10.73(ii) Spherical Bessel Functions
In quantum mechanics the spherical Bessel functions arise in the solution of the Schrödinger wave equation for a particle in a central potential. …
2: Bibliography F
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • FDLIBM (free C library)
  • C. Flammer (1957) Spheroidal Wave Functions. Stanford University Press, Stanford, CA.
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • C. Fröberg (1955) Numerical treatment of Coulomb wave functions. Rev. Mod. Phys. 27 (4), pp. 399–411.
  • 3: Bibliography V
  • A. L. Van Buren, R. V. Baier, S. Hanish, and B. J. King (1972) Calculation of spheroidal wave functions. J. Acoust. Soc. Amer. 51, pp. 414–416.
  • A. L. Van Buren, B. J. King, R. V. Baier, and S. Hanish (1975) Tables of Angular Spheroidal Wave Functions, Vol. 1, Prolate, m = 0 ; Vol. 2, Oblate, m=0. Naval Res. Lab. Reports, Washington, D.C..
  • Van Buren (website) Mathieu and Spheroidal Wave Functions: Fortran Programs for their Accurate Calculation
  • G. Vedeler (1950) A Mathieu equation for ships rolling among waves. I, II. Norske Vid. Selsk. Forh., Trondheim 22 (25–26), pp. 113–123.
  • H. Volkmer (2004a) Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation. Constr. Approx. 20 (1), pp. 39–54.
  • 4: Bibliography N
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • R. G. Newton (2002) Scattering theory of waves and particles. Dover Publications, Inc., Mineola, NY.
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • J. F. Nye (1999) Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations. Institute of Physics Publishing, Bristol.
  • 5: 30.9 Asymptotic Approximations and Expansions
    §30.9(i) Prolate Spheroidal Wave Functions
    §30.9(ii) Oblate Spheroidal Wave Functions
    §30.9(iii) Other Approximations and Expansions
    The asymptotic behavior of 𝖯𝗌 n m ( x , γ 2 ) and 𝖰𝗌 n m ( x , γ 2 ) as x ± 1 is given in Erdélyi et al. (1955, p. 151). …
    6: Bibliography
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • M. Abramowitz (1949) Asymptotic expansions of spheroidal wave functions. J. Math. Phys. Mass. Inst. Tech. 28, pp. 195–199.
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • F. M. Arscott (1956) Perturbation solutions of the ellipsoidal wave equation. Quart. J. Math. Oxford Ser. (2) 7, pp. 161–174.
  • 7: Bibliography B
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • T. A. Beu and R. I. Câmpeanu (1983a) Prolate angular spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 187–192.
  • T. A. Beu and R. I. Câmpeanu (1983b) Prolate radial spheroidal wave functions. Comput. Phys. Comm. 30 (2), pp. 177–185.
  • C. J. Bouwkamp (1947) On spheroidal wave functions of order zero. J. Math. Phys. Mass. Inst. Tech. 26, pp. 79–92.
  • A. Burgess (1963) The determination of phases and amplitudes of wave functions. Proc. Phys. Soc. 81 (3), pp. 442–452.
  • 8: Bibliography M
  • N. Michel (2007) Precise Coulomb wave functions for a wide range of complex , η and z . Computer Physics Communications 176 (3), pp. 232–249.
  • J. W. Miles (1975) Asymptotic approximations for prolate spheroidal wave functions. Studies in Appl. Math. 54 (4), pp. 315–349.
  • H. J. W. Müller (1962) Asymptotic expansions of oblate spheroidal wave functions and their characteristic numbers. J. Reine Angew. Math. 211, pp. 33–47.
  • H. J. W. Müller (1966b) Asymptotic expansions of ellipsoidal wave functions in terms of Hermite functions. Math. Nachr. 32, pp. 49–62.
  • H. J. W. Müller (1966c) On asymptotic expansions of ellipsoidal wave functions. Math. Nachr. 32, pp. 157–172.
  • 9: Software Index
    Open Source With Book Commercial
    20 Theta Functions
    ‘✓’ indicates that a software package implements the functions in a section; ‘a’ indicates available functionality through optional or add-on packages; an empty space indicates no known support. … In the list below we identify four main sources of software for computing special functions. …
  • Commercial Software.

    Such software ranges from a collection of reusable software parts (e.g., a library) to fully functional interactive computing environments with an associated computing language. Such software is usually professionally developed, tested, and maintained to high standards. It is available for purchase, often with accompanying updates and consulting support.

  • The following are web-based software repositories with significant holdings in the area of special functions. …
    10: Bibliography S
  • M. J. Seaton and G. Peach (1962) The determination of phases of wave functions. Proc. Phys. Soc. 79 (6), pp. 1296–1297.
  • M. J. Seaton (2002b) FGH, a code for the calculation of Coulomb radial wave functions from series expansions. Comput. Phys. Comm. 146 (2), pp. 250–253.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • B. D. Sleeman (1968a) Integral equations and relations for Lamé functions and ellipsoidal wave functions. Proc. Cambridge Philos. Soc. 64, pp. 113–126.
  • D. Slepian (1964) Prolate spheroidal wave functions, Fourier analysis and uncertainity. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell System Tech. J. 43, pp. 3009–3057.