About the Project

von Staudt?Clausen theorem

AdvancedHelp

(0.011 seconds)

1—10 of 125 matching pages

1: 24.10 Arithmetic Properties
§24.10(i) Von Staudt–Clausen Theorem
2: 28.27 Addition Theorems
§28.27 Addition Theorems
Addition theorems provide important connections between Mathieu functions with different parameters and in different coordinate systems. They are analogous to the addition theorems for Bessel functions (§10.23(ii)) and modified Bessel functions (§10.44(ii)). …
3: 27.12 Asymptotic Formulas: Primes
Prime Number Theorem
4: Annie A. M. Cuyt
Subsequently she was a Research fellow with the Alexander von Humboldt Foundation (Germany), she obtained the Habilitation (1986) and became author or co-author of several books, including Handbook of Continued Fractions for Special Functions. …
5: Bibliography C
  • L. Carlitz (1961b) The Staudt-Clausen theorem. Math. Mag. 34, pp. 131–146.
  • B. C. Carlson (1971) New proof of the addition theorem for Gegenbauer polynomials. SIAM J. Math. Anal. 2, pp. 347–351.
  • B. C. Carlson (1978) Short proofs of three theorems on elliptic integrals. SIAM J. Math. Anal. 9 (3), pp. 524–528.
  • F. Clarke (1989) The universal von Staudt theorems. Trans. Amer. Math. Soc. 315 (2), pp. 591–603.
  • Th. Clausen (1828) Über die Fälle, wenn die Reihe von der Form y = 1 + α 1 β γ x + α α + 1 1 2 β β + 1 γ γ + 1 x 2 + etc. ein Quadrat von der Form z = 1 + α 1 β γ δ ϵ x + α α + 1 1 2 β β + 1 γ γ + 1 δ δ + 1 ϵ ϵ + 1 x 2 + etc. hat. J. Reine Angew. Math. 3, pp. 89–91.
  • 6: Diego Dominici
    In 2008 Dominici received a Research Fellowship from the Alexander von Humboldt Foundation and visited the Technische Universität Berlin in Germany. …
    7: Bibliography G
  • K. Germey (1964) Die Beugung einer ebenen elektromanetischen Welle an zwei parallelen unendlich langen idealleitenden Zylindern von elliptischem Querschnitt. Ann. Physik (7) 468, pp. 237–251 (German).
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • D. Goss (1978) Von Staudt for 𝐅 q [ T ] . Duke Math. J. 45 (4), pp. 885–910.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 8: Bibliography K
  • N. M. Katz (1975) The congruences of Clausen-von Staudt and Kummer for Bernoulli-Hurwitz numbers. Math. Ann. 216 (1), pp. 1–4.
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • 9: Bibliography L
  • J. Lagrange (1770) Démonstration d’un Théoréme d’Arithmétique. Nouveau Mém. Acad. Roy. Sci. Berlin, pp. 123–133 (French).
  • E. Landau (1953) Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände. Chelsea Publishing Co., New York (German).
  • P. A. Lesky (1996) Endliche und unendliche Systeme von kontinuierlichen klassischen Orthogonalpolynomen. Z. Angew. Math. Mech. 76 (3), pp. 181–184.
  • 10: Bibliography
  • J. Achenbach (1986) Numerik: Implementierung von Zylinderfunktionen. Elektrotechnik, Friedr. Vieweg & Sohn, Braunschweig-Wiesbaden.
  • W. A. Al-Salam (1990) Characterization theorems for orthogonal polynomials. In Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 294, pp. 1–24.
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • T. M. Apostol (2000) A Centennial History of the Prime Number Theorem. In Number Theory, Trends Math., pp. 1–14.