About the Project

variation of real or complex functions

AdvancedHelp

(0.007 seconds)

1—10 of 603 matching pages

1: 1.4 Calculus of One Variable
β–Ί
Functions of Bounded Variation
β–Ίβ–ΊLastly, whether or not the real numbers a and b satisfy a < b , and whether or not they are finite, we define 𝒱 a , b ⁑ ( f ) by (1.4.34) whenever this integral exists. This definition also applies when f ⁑ ( x ) is a complex function of the real variable x . …
2: 10.40 Asymptotic Expansions for Large Argument
β–Ί
10.40.6 I Ξ½ ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) 1 2 ⁒ z ⁒ ( 1 1 2 ⁒ ΞΌ 1 ( 2 ⁒ z ) 2 + 1 3 2 4 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 9 ) ( 2 ⁒ z ) 4 β‹― ) ,
β–Ί
10.40.7 I Ξ½ ⁑ ( z ) ⁒ K Ξ½ ⁑ ( z ) 1 2 ⁒ z ⁒ ( 1 + 1 2 ⁒ ΞΌ 3 ( 2 ⁒ z ) 2 1 2 4 ⁒ ( ΞΌ 1 ) ⁒ ( ΞΌ 45 ) ( 2 ⁒ z ) 4 + β‹― ) ,
β–Ί
§10.40(iii) Error Bounds for Complex Argument and Order
β–Ίwhere 𝒱 denotes the variational operator (§2.3(i)), and the paths of variation are subject to the condition that | ⁑ t | changes monotonically. … β–Ί
10.40.12 𝒱 z , ⁑ ( t β„“ ) { | z | β„“ , | ph ⁑ z | 1 2 ⁒ Ο€ , Ο‡ ⁑ ( β„“ ) ⁒ | z | β„“ , 1 2 ⁒ Ο€ | ph ⁑ z | Ο€ , 2 ⁒ Ο‡ ⁑ ( β„“ ) ⁒ | ⁑ z | β„“ , Ο€ | ph ⁑ z | < 3 2 ⁒ Ο€ ,
3: 8.23 Statistical Applications
§8.23 Statistical Applications
4: 10.77 Software
β–Ί
§10.77(iv) Bessel Functions–Integer or Half-Integer Order and Complex Arguments, including Kelvin Functions
β–Ί
§10.77(v) Bessel FunctionsReal Order and Complex Argument (including Hankel Functions)
β–Ί
§10.77(vii) Bessel FunctionsComplex Order and Real Argument
β–Ί
§10.77(viii) Bessel FunctionsComplex Order and Argument
5: 14.31 Other Applications
β–Ί
§14.31(iii) Miscellaneous
β–ΊLegendre functions P Ξ½ ⁑ ( x ) of complex degree Ξ½ appear in the application of complex angular momentum techniques to atomic and molecular scattering (Connor and Mackay (1979)). …
6: 30.6 Functions of Complex Argument
§30.6 Functions of Complex Argument
β–ΊThe solutions … β–Ί
30.6.3 𝒲 ⁑ { 𝑃𝑠 n m ⁑ ( z , Ξ³ 2 ) , 𝑄𝑠 n m ⁑ ( z , Ξ³ 2 ) } = ( 1 ) m ⁒ ( n + m ) ! ( 1 z 2 ) ⁒ ( n m ) ! ⁒ A n m ⁑ ( Ξ³ 2 ) ⁒ A n m ⁑ ( Ξ³ 2 ) ,
β–Ί β–Ί
7: 12.8 Recurrence Relations and Derivatives
β–Ί
12.8.1 z ⁒ U ⁑ ( a , z ) U ⁑ ( a 1 , z ) + ( a + 1 2 ) ⁒ U ⁑ ( a + 1 , z ) = 0 ,
β–Ί
12.8.2 U ⁑ ( a , z ) + 1 2 ⁒ z ⁒ U ⁑ ( a , z ) + ( a + 1 2 ) ⁒ U ⁑ ( a + 1 , z ) = 0 ,
β–Ί
12.8.3 U ⁑ ( a , z ) 1 2 ⁒ z ⁒ U ⁑ ( a , z ) + U ⁑ ( a 1 , z ) = 0 ,
β–Ί
12.8.4 2 ⁒ U ⁑ ( a , z ) + U ⁑ ( a 1 , z ) + ( a + 1 2 ) ⁒ U ⁑ ( a + 1 , z ) = 0 .
β–Ί
12.8.5 z ⁒ V ⁑ ( a , z ) V ⁑ ( a + 1 , z ) + ( a 1 2 ) ⁒ V ⁑ ( a 1 , z ) = 0 ,
8: 5.23 Approximations
β–Ί
§5.23(iii) Approximations in the Complex Plane
9: 22.17 Moduli Outside the Interval [0,1]
β–Ί
22.17.1 p ⁣ q ⁑ ( z , k ) = p ⁣ q ⁑ ( z , k ) ,
β–Ί
22.17.2 sn ⁑ ( z , 1 / k ) = k ⁒ sn ⁑ ( z / k , k ) ,
β–Ί
22.17.3 cn ⁑ ( z , 1 / k ) = dn ⁑ ( z / k , k ) ,
β–Ί
22.17.4 dn ⁑ ( z , 1 / k ) = cn ⁑ ( z / k , k ) .
β–Ί
§22.17(ii) Complex Moduli
10: 4.29 Graphics
β–Ί
§4.29(ii) Complex Arguments
β–ΊThe surfaces for the complex hyperbolic and inverse hyperbolic functions are similar to the surfaces depicted in §4.15(iii) for the trigonometric and inverse trigonometric functions. …