About the Project

uniform asymptotic expansions for large order

AdvancedHelp

(0.013 seconds)

21—30 of 38 matching pages

21: 8.18 Asymptotic Expansions of I x ( a , b )
§8.18(ii) Large Parameters: Uniform Asymptotic Expansions
Symmetric Case
General Case
Inverse Function
For asymptotic expansions for large values of a and/or b of the x -solution of the equation …
22: Bibliography N
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • G. Nemes (2014b) The resurgence properties of the large order asymptotics of the Anger-Weber function I. J. Class. Anal. 4 (1), pp. 1–39.
  • G. Nemes (2014c) The resurgence properties of the large order asymptotics of the Anger-Weber function II. J. Class. Anal. 4 (2), pp. 121–147.
  • G. Nemes (2017b) Error Bounds for the Large-Argument Asymptotic Expansions of the Hankel and Bessel Functions. Acta Appl. Math. 150, pp. 141–177.
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • 23: Bibliography T
  • N. M. Temme (1978) Uniform asymptotic expansions of confluent hypergeometric functions. J. Inst. Math. Appl. 22 (2), pp. 215–223.
  • N. M. Temme (1985) Laplace type integrals: Transformation to standard form and uniform asymptotic expansions. Quart. Appl. Math. 43 (1), pp. 103–123.
  • N. M. Temme (1995c) Uniform asymptotic expansions of integrals: A selection of problems. J. Comput. Appl. Math. 65 (1-3), pp. 395–417.
  • N. M. Temme (1997) Numerical algorithms for uniform Airy-type asymptotic expansions. Numer. Algorithms 15 (2), pp. 207–225.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 24: 13.20 Uniform Asymptotic Approximations for Large μ
    §13.20 Uniform Asymptotic Approximations for Large μ
    §13.20(i) Large μ , Fixed κ
    §13.20(v) Large μ , Other Expansions
    25: 18.15 Asymptotic Approximations
    §18.15 Asymptotic Approximations
    For large β , fixed α , and 0 n / β c , Dunster (1999) gives asymptotic expansions of P n ( α , β ) ( z ) that are uniform in unbounded complex z -domains containing z = ± 1 . …This reference also supplies asymptotic expansions of P n ( α , β ) ( z ) for large n , fixed α , and 0 β / n c . The latter expansions are in terms of Bessel functions, and are uniform in complex z -domains not containing neighborhoods of 1. … The first term of this expansion also appears in Szegő (1975, Theorem 8.21.7). …
    26: 28.8 Asymptotic Expansions for Large q
    §28.8 Asymptotic Expansions for Large q
    §28.8(ii) Sips’ Expansions
    Barrett’s Expansions
    Dunster’s Approximations
    27: Bibliography J
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • D. S. Jones (1997) Introduction to Asymptotics: A Treatment Using Nonstandard Analysis. World Scientific Publishing Co. Inc., River Edge, NJ.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p s ¯ n r ( η , h ) and q s ¯ n r ( η , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • 28: Bibliography W
  • Z. Wang and R. Wong (2002) Uniform asymptotic expansion of J ν ( ν a ) via a difference equation. Numer. Math. 91 (1), pp. 147–193.
  • R. Wong and Y.-Q. Zhao (2003) Estimates for the error term in a uniform asymptotic expansion of the Jacobi polynomials. Anal. Appl. (Singap.) 1 (2), pp. 213–241.
  • R. Wong and Y. Zhao (2004) Uniform asymptotic expansion of the Jacobi polynomials in a complex domain. Proc. Roy. Soc. London Ser. A 460, pp. 2569–2586.
  • R. Wong (1973a) An asymptotic expansion of W k , m ( z ) with large variable and parameters. Math. Comp. 27 (122), pp. 429–436.
  • R. Wong (1973b) On uniform asymptotic expansion of definite integrals. J. Approximation Theory 7 (1), pp. 76–86.
  • 29: 24.16 Generalizations
    §24.16(i) Higher-Order Analogs
    Polynomials and Numbers of Integer Order
    For = 0 , 1 , 2 , , Bernoulli and Euler polynomials of order are defined respectively by … For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). … In no particular order, other generalizations include: Bernoulli numbers and polynomials with arbitrary complex index (Butzer et al. (1992)); Euler numbers and polynomials with arbitrary complex index (Butzer et al. (1994)); q-analogs (Carlitz (1954a), Andrews and Foata (1980)); conjugate Bernoulli and Euler polynomials (Hauss (1997, 1998)); Bernoulli–Hurwitz numbers (Katz (1975)); poly-Bernoulli numbers (Kaneko (1997)); Universal Bernoulli numbers (Clarke (1989)); p -adic integer order Bernoulli numbers (Adelberg (1996)); p -adic q -Bernoulli numbers (Kim and Kim (1999)); periodic Bernoulli numbers (Berndt (1975b)); cotangent numbers (Girstmair (1990b)); Bernoulli–Carlitz numbers (Goss (1978)); Bernoulli–Padé numbers (Dilcher (2002)); Bernoulli numbers belonging to periodic functions (Urbanowicz (1988)); cyclotomic Bernoulli numbers (Girstmair (1990a)); modified Bernoulli numbers (Zagier (1998)); higher-order Bernoulli and Euler polynomials with multiple parameters (Erdélyi et al. (1953a, §§1.13.1, 1.14.1)).
    30: 2.11 Remainder Terms; Stokes Phenomenon
    §2.11(i) Numerical Use of Asymptotic Expansions
    In order to guard against this kind of error remaining undetected, the wanted function may need to be computed by another method (preferably nonasymptotic) for the smallest value of the (large) asymptotic variable x that is intended to be used. … For second-order differential equations, see Olde Daalhuis and Olver (1995a), Olde Daalhuis (1995, 1996), and Murphy and Wood (1997). …