About the Project

uniform%20asymptotic%20solutions%20of%20differential%20equations

AdvancedHelp

(0.004 seconds)

1—10 of 11 matching pages

1: Bibliography D
β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • β–Ί
  • T. M. Dunster (1990b) Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point. SIAM J. Math. Anal. 21 (6), pp. 1594–1618.
  • β–Ί
  • T. M. Dunster (1994b) Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane. SIAM J. Math. Anal. 25 (2), pp. 322–353.
  • β–Ί
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • β–Ί
  • T. M. Dunster (1996c) Error bounds for exponentially improved asymptotic solutions of ordinary differential equations having irregular singularities of rank one. Methods Appl. Anal. 3 (1), pp. 109–134.
  • 2: Bibliography O
    β–Ί
  • A. B. Olde Daalhuis and F. W. J. Olver (1998) On the asymptotic and numerical solution of linear ordinary differential equations. SIAM Rev. 40 (3), pp. 463–495.
  • β–Ί
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • β–Ί
  • F. W. J. Olver (1994a) Asymptotic expansions of the coefficients in asymptotic series solutions of linear differential equations. Methods Appl. Anal. 1 (1), pp. 1–13.
  • β–Ί
  • F. W. J. Olver (1997a) Asymptotic solutions of linear ordinary differential equations at an irregular singularity of rank unity. Methods Appl. Anal. 4 (4), pp. 375–403.
  • β–Ί
  • F. W. J. Olver (1999) On the uniqueness of asymptotic solutions of linear differential equations. Methods Appl. Anal. 6 (2), pp. 165–174.
  • 3: Bibliography W
    β–Ί
  • Z. Wang and R. Wong (2002) Uniform asymptotic expansion of J Ξ½ ⁒ ( Ξ½ ⁒ a ) via a difference equation. Numer. Math. 91 (1), pp. 147–193.
  • β–Ί
  • Z. Wang and R. Wong (2006) Uniform asymptotics of the Stieltjes-Wigert polynomials via the Riemann-Hilbert approach. J. Math. Pures Appl. (9) 85 (5), pp. 698–718.
  • β–Ί
  • W. Wasow (1965) Asymptotic Expansions for Ordinary Differential Equations. Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney.
  • β–Ί
  • R. Wong and H. Y. Zhang (2007) Asymptotic solutions of a fourth order differential equation. Stud. Appl. Math. 118 (2), pp. 133–152.
  • β–Ί
  • R. Wong (1973b) On uniform asymptotic expansion of definite integrals. J. Approximation Theory 7 (1), pp. 76–86.
  • 4: Bibliography B
    β–Ί
  • M. V. Berry (1989) Uniform asymptotic smoothing of Stokes’s discontinuities. Proc. Roy. Soc. London Ser. A 422, pp. 7–21.
  • β–Ί
  • S. Bochner (1952) Bessel functions and modular relations of higher type and hyperbolic differential equations. Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] 1952 (Tome Supplementaire), pp. 12–20.
  • β–Ί
  • A. A. Bogush and V. S. Otchik (1997) Problem of two Coulomb centres at large intercentre separation: Asymptotic expansions from analytical solutions of the Heun equation. J. Phys. A 30 (2), pp. 559–571.
  • β–Ί
  • W. G. C. Boyd and T. M. Dunster (1986) Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions. SIAM J. Math. Anal. 17 (2), pp. 422–450.
  • β–Ί
  • W. G. C. Boyd (1990a) Asymptotic Expansions for the Coefficient Functions Associated with Linear Second-order Differential Equations: The Simple Pole Case. In Asymptotic and Computational Analysis (Winnipeg, MB, 1989), R. Wong (Ed.), Lecture Notes in Pure and Applied Mathematics, Vol. 124, pp. 53–73.
  • 5: Bibliography N
    β–Ί
  • A. Nakamura (1996) Toda equation and its solutions in special functions. J. Phys. Soc. Japan 65 (6), pp. 1589–1597.
  • β–Ί
  • G. Nemes and A. B. Olde Daalhuis (2016) Uniform asymptotic expansion for the incomplete beta function. SIGMA Symmetry Integrability Geom. Methods Appl. 12, pp. 101, 5 pages.
  • β–Ί
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • β–Ί
  • L. N. Nosova and S. A. Tumarkin (1965) Tables of Generalized Airy Functions for the Asymptotic Solution of the Differential Equations Ο΅ ⁒ ( p ⁒ y ) + ( q + Ο΅ ⁒ r ) ⁒ y = f . Pergamon Press, Oxford.
  • β–Ί
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 6: Bibliography S
    β–Ί
  • H. Segur and M. J. Ablowitz (1981) Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent. Phys. D 3 (1-2), pp. 165–184.
  • β–Ί
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • β–Ί
  • R. Spigler (1984) The linear differential equation whose solutions are the products of solutions of two given differential equations. J. Math. Anal. Appl. 98 (1), pp. 130–147.
  • β–Ί
  • F. Stenger (1966a) Error bounds for asymptotic solutions of differential equations. I. The distinct eigenvalue case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 167–186.
  • β–Ί
  • F. Stenger (1966b) Error bounds for asymptotic solutions of differential equations. II. The general case. J. Res. Nat. Bur. Standards Sect. B 70B, pp. 187–210.
  • 7: Bibliography K
    β–Ί
  • A. A. Kapaev (1988) Asymptotic behavior of the solutions of the Painlevé equation of the first kind. Differ. Uravn. 24 (10), pp. 1684–1695 (Russian).
  • β–Ί
  • A. V. Kitaev, C. K. Law, and J. B. McLeod (1994) Rational solutions of the fifth Painlevé equation. Differential Integral Equations 7 (3-4), pp. 967–1000.
  • β–Ί
  • A. V. Kitaev and A. H. Vartanian (2004) Connection formulae for asymptotics of solutions of the degenerate third Painlevé equation. I. Inverse Problems 20 (4), pp. 1165–1206.
  • β–Ί
  • A. V. Kitaev (1987) The method of isomonodromic deformations and the asymptotics of the solutions of the “complete” third Painlevé equation. Mat. Sb. (N.S.) 134(176) (3), pp. 421–444, 448 (Russian).
  • β–Ί
  • Y. A. Kravtsov (1964) Asymptotic solution of Maxwell’s equations near caustics. Izv. Vuz. Radiofiz. 7, pp. 1049–1056.
  • 8: 12.10 Uniform Asymptotic Expansions for Large Parameter
    §12.10 Uniform Asymptotic Expansions for Large Parameter
    β–Ί
    §12.10(vi) Modifications of Expansions in Elementary Functions
    β–Ίβ–Ί
    Modified Expansions
    β–Ί
    9: Bibliography G
    β–Ί
  • L. Gårding (1947) The solution of Cauchy’s problem for two totally hyperbolic linear differential equations by means of Riesz integrals. Ann. of Math. (2) 48 (4), pp. 785–826.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2004b) Computing solutions of the modified Bessel differential equation for imaginary orders and positive arguments. ACM Trans. Math. Software 30 (2), pp. 145–158.
  • β–Ί
  • V. I. Gromak and N. A. LukaΕ‘evič (1982) Special classes of solutions of Painlevé equations. Differ. Uravn. 18 (3), pp. 419–429 (Russian).
  • β–Ί
  • V. I. Gromak (1976) The solutions of Painlevé’s fifth equation. Differ. Uravn. 12 (4), pp. 740–742 (Russian).
  • β–Ί
  • V. I. Gromak (1978) One-parameter systems of solutions of Painlevé equations. Differ. Uravn. 14 (12), pp. 2131–2135 (Russian).
  • 10: 18.40 Methods of Computation
    β–ΊUsually, however, other methods are more efficient, especially the numerical solution of difference equations3.6) and the application of uniform asymptotic expansions (when available) for OP’s of large degree. … … β–ΊIn what follows we consider only the simple, illustrative, case that ΞΌ ⁒ ( x ) is continuously differentiable so that d ΞΌ ⁒ ( x ) = w ⁑ ( x ) ⁒ d x , with w ⁑ ( x ) real, positive, and continuous on a real interval [ a , b ] . The strategy will be to: 1) use the moments to determine the recursion coefficients Ξ± n , Ξ² n of equations (18.2.11_5) and (18.2.11_8); then, 2) to construct the quadrature abscissas x i and weights (or Christoffel numbers) w i from the J-matrix of §3.5(vi), equations (3.5.31) and(3.5.32). … β–ΊResults of low ( 2 to 3 decimal digits) precision for w ⁑ ( x ) are easily obtained for N 10 to 20 . … β–ΊEquation (18.40.7) provides step-histogram approximations to a x d ΞΌ ⁒ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. …