About the Project

ultraspherical%20polynomials

AdvancedHelp

(0.002 seconds)

4 matching pages

1: 18.5 Explicit Representations
See (Erdélyi et al., 1953b, §10.9(37)) for a related formula for ultraspherical polynomials.
§18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
Ultraspherical
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … Similarly in the cases of the ultraspherical polynomials C n ( λ ) ( x ) and the Laguerre polynomials L n ( α ) ( x ) we assume that λ > 1 2 , λ 0 , and α > 1 , unless stated otherwise. …
2: Errata
  • Equation (18.7.25)
    18.7.25 lim λ 0 n + λ λ C n ( λ ) ( x ) = { 1 , n = 0 , 2 T n ( x ) , n = 1 , 2 ,

    We included the case n = 0 .

  • Chapters 14 Legendre and Related Functions, 15 Hypergeometric Function

    The Gegenbauer function C α ( λ ) ( z ) , was labeled inadvertently as the ultraspherical (Gegenbauer) polynomial C n ( λ ) ( z ) . In order to resolve this inconsistency, this function now links correctly to its definition. This change affects Gegenbauer functions which appear in §§14.3(iv), 15.9(iii).

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • Table 18.9.1

    The coefficient A n for C n ( λ ) ( x ) in the first row of this table originally omitted the parentheses and was given as 2 n + λ n + 1 , instead of 2 ( n + λ ) n + 1 .

    p n ( x ) A n B n C n
    C n ( λ ) ( x ) 2 ( n + λ ) n + 1 0 n + 2 λ 1 n + 1

    Reported 2010-09-16 by Kendall Atkinson.

  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 3: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • G. C. Donovan, J. S. Geronimo, and D. P. Hardin (1999) Orthogonal polynomials and the construction of piecewise polynomial smooth wavelets. SIAM J. Math. Anal. 30 (5), pp. 1029–1056.
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • 4: Bibliography S
  • K. L. Sala (1989) Transformations of the Jacobian amplitude function and its calculation via the arithmetic-geometric mean. SIAM J. Math. Anal. 20 (6), pp. 1514–1528.
  • A. Sharples (1967) Uniform asymptotic forms of modified Mathieu functions. Quart. J. Mech. Appl. Math. 20 (3), pp. 365–380.
  • J. R. Stembridge (1995) A Maple package for symmetric functions. J. Symbolic Comput. 20 (5-6), pp. 755–768.
  • F. Stenger (1993) Numerical Methods Based on Sinc and Analytic Functions. Springer Series in Computational Mathematics, Vol. 20, Springer-Verlag, New York.
  • O. Szász (1950) On the relative extrema of ultraspherical polynomials. Boll. Un. Mat. Ital. (3) 5, pp. 125–127.