About the Project

turning points

AdvancedHelp

(0.002 seconds)

11—20 of 24 matching pages

11: Bibliography O
  • F. W. J. Olver (1964b) Error bounds for asymptotic expansions in turning-point problems. J. Soc. Indust. Appl. Math. 12 (1), pp. 200–214.
  • F. W. J. Olver (1975a) Second-order linear differential equations with two turning points. Philos. Trans. Roy. Soc. London Ser. A 278, pp. 137–174.
  • F. W. J. Olver (1976) Improved error bounds for second-order differential equations with two turning points. J. Res. Nat. Bur. Standards Sect. B 80B (4), pp. 437–440.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1977b) Connection formulas for second-order differential equations having an arbitrary number of turning points of arbitrary multiplicities. SIAM J. Math. Anal. 8 (4), pp. 673–700.
  • 12: 2.9 Difference Equations
    For discussions of turning points, transition points, and uniform asymptotic expansions for solutions of linear difference equations of the second order see Wang and Wong (2003, 2005). …
    13: 2.8 Differential Equations with a Parameter
    Zeros of f ( z ) are also called turning points. …
    §2.8(iii) Case II: Simple Turning Point
    §2.8(v) Multiple and Fractional Turning Points
    The approach used in preceding subsections for equation (2.8.1) also succeeds when z 0 is a multiple or fractional turning point. … For two coalescing turning points see Olver (1975a, 1976) and Dunster (1996a); in this case the uniform approximants are parabolic cylinder functions. …
    14: Bibliography D
  • T. M. Dunster (1990b) Uniform asymptotic solutions of second-order linear differential equations having a double pole with complex exponent and a coalescing turning point. SIAM J. Math. Anal. 21 (6), pp. 1594–1618.
  • T. M. Dunster (1994b) Uniform asymptotic solutions of second-order linear differential equations having a simple pole and a coalescing turning point in the complex plane. SIAM J. Math. Anal. 25 (2), pp. 322–353.
  • T. M. Dunster (1996a) Asymptotic solutions of second-order linear differential equations having almost coalescent turning points, with an application to the incomplete gamma function. Proc. Roy. Soc. London Ser. A 452, pp. 1331–1349.
  • T. M. Dunster (2001a) Convergent expansions for solutions of linear ordinary differential equations having a simple turning point, with an application to Bessel functions. Stud. Appl. Math. 107 (3), pp. 293–323.
  • T. M. Dunster (2014) Olver’s error bound methods applied to linear ordinary differential equations having a simple turning point. Anal. Appl. (Singap.) 12 (4), pp. 385–402.
  • 15: 33.22 Particle Scattering and Atomic and Molecular Spectra
    §33.22(vi) Solutions Inside the Turning Point
    16: Bibliography P
  • R. Piessens (1990) On the computation of zeros and turning points of Bessel functions. Bull. Soc. Math. Grèce (N.S.) 31, pp. 117–122.
  • R. Piessens and S. Ahmed (1986) Approximation for the turning points of Bessel functions. J. Comput. Phys. 64 (1), pp. 253–257.
  • 17: Bibliography W
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • W. Wasow (1985) Linear Turning Point Theory. Applied Mathematical Sciences No. 54, Springer-Verlag, New York.
  • 18: Bibliography N
  • J. J. Nestor (1984) Uniform Asymptotic Approximations of Solutions of Second-order Linear Differential Equations, with a Coalescing Simple Turning Point and Simple Pole. Ph.D. Thesis, University of Maryland, College Park, MD.
  • 19: Bibliography G
  • J. S. Geronimo, O. Bruno, and W. Van Assche (2004) WKB and turning point theory for second-order difference equations. In Spectral Methods for Operators of Mathematical Physics, Oper. Theory Adv. Appl., Vol. 154, pp. 101–138.
  • A. Gil and J. Segura (2003) Computing the zeros and turning points of solutions of second order homogeneous linear ODEs. SIAM J. Numer. Anal. 41 (3), pp. 827–855.
  • 20: Bibliography B
  • P. Baldwin (1991) Coefficient functions for an inhomogeneous turning-point problem. Mathematika 38 (2), pp. 217–238.
  • W. G. C. Boyd and T. M. Dunster (1986) Uniform asymptotic solutions of a class of second-order linear differential equations having a turning point and a regular singularity, with an application to Legendre functions. SIAM J. Math. Anal. 17 (2), pp. 422–450.
  • W. G. C. Boyd (1987) Asymptotic expansions for the coefficient functions that arise in turning-point problems. Proc. Roy. Soc. London Ser. A 410, pp. 35–60.