About the Project

truncated%20exponential%20series

AdvancedHelp

(0.003 seconds)

11—20 of 583 matching pages

11: 12.11 Zeros
12.11.1 z a , s = e 3 4 π i 2 τ s ( 1 i a λ s 2 τ s + 2 a 2 λ s 2 8 a 2 λ s + 4 a 2 + 3 16 τ s 2 + O ( λ s 3 τ s 3 ) ) ,
12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
12: 9.7 Asymptotic Expansions
Numerical values of χ ( n ) are given in Table 9.7.1 for n = 1 ( 1 ) 20 to 2D. … In (9.7.5) and (9.7.6) the n th error term, that is, the error on truncating the expansion at n terms, is bounded in magnitude by the first neglected term and has the same sign, provided that the following term is of opposite sign, that is, if n 0 for (9.7.5) and n 1 for (9.7.6). … In (9.7.9)–(9.7.12) the n th error term in each infinite series is bounded in magnitude by the first neglected term and has the same sign, provided that the following term in the series is of opposite sign. …
Ai ( x ) e ξ 2 π x 1 / 4 ,
Bi ( x ) e ξ π x 1 / 4 ( 1 + ( χ ( 7 6 ) + 1 ) 5 72 ξ ) ,
13: 7.24 Approximations
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • §7.24(ii) Expansions in Chebyshev Series
  • Luke (1969b, pp. 323–324) covers 1 2 π erf x and e x 2 F ( x ) for 3 x 3 (the Chebyshev coefficients are given to 20D); π x e x 2 erfc x and 2 x F ( x ) for x 3 (the Chebyshev coefficients are given to 20D and 15D, respectively). Coefficients for the Fresnel integrals are given on pp. 328–330 (20D).

  • Shepherd and Laframboise (1981) gives coefficients of Chebyshev series for ( 1 + 2 x ) e x 2 erfc x on ( 0 , ) (22D).

  • 14: 6.19 Tables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 15: 25.12 Polylogarithms
    When z = e i θ , 0 θ 2 π , (25.12.1) becomes …The cosine series in (25.12.7) has the elementary sum … For real or complex s and z the polylogarithm Li s ( z ) is defined by … For each fixed complex s the series defines an analytic function of z for | z | < 1 . … When s = 2 and e 2 π i a = z , (25.12.13) becomes (25.12.4). …
    16: 8.11 Asymptotic Approximations and Expansions
    8.11.2 Γ ( a , z ) = z a 1 e z ( k = 0 n 1 u k z k + R n ( a , z ) ) , n = 1 , 2 , .
    This reference also contains explicit formulas for the coefficients in terms of Stirling numbers. … With x = 1 , an asymptotic expansion of e n ( n x ) / e n x follows from (8.11.14) and (8.11.16). …
    8.11.14 e n x = e n ( n x ) + ( n x ) n n ! S n ( x ) ,
    8.11.15 S n ( x ) = γ ( n + 1 , n x ) ( n x ) n e n x .
    17: 8 Incomplete Gamma and Related
    Functions
    18: 28 Mathieu Functions and Hill’s Equation
    19: Peter L. Walker
    Walker’s books are An Introduction to Complex Analysis, published by Hilger in 1974, The Theory of Fourier Series and Integrals, published by Wiley in 1986, Elliptic Functions. A Constructive Approach, published by Wiley in 1996, and Examples and Theorems in Analysis, published by Springer in 2004. …
  • 20: 19.36 Methods of Computation
    The incomplete integrals R F ( x , y , z ) and R G ( x , y , z ) can be computed by successive transformations in which two of the three variables converge quadratically to a common value and the integrals reduce to R C , accompanied by two quadratically convergent series in the case of R G ; compare Carlson (1965, §§5,6). … If the iteration of (19.36.6) and (19.36.12) is stopped when c s < r t s ( M and T being approximated by a s and t s , and the infinite series being truncated), then the relative error in R F and R G is less than r if we neglect terms of order r 2 . … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … For series expansions of Legendre’s integrals see §19.5. Faster convergence of power series for K ( k ) and E ( k ) can be achieved by using (19.5.1) and (19.5.2) in the right-hand sides of (19.8.12). …