About the Project

triple integrals

AdvancedHelp

(0.000 seconds)

7 matching pages

1: 1.5 Calculus of Two or More Variables
Triple Integrals
In case of triple integrals the ( x , y , z ) sets are of the form …
1.5.43 D f ( x , y , z ) d x d y d z = D f ( x ( u , v , w ) , y ( u , v , w ) , z ( u , v , w ) ) | ( x , y , z ) ( u , v , w ) | d u d v d w .
2: 1.6 Vectors and Vector-Valued Functions
1.6.58 V ( 𝐅 ) d V = S 𝐅 d 𝐒 ,
1.6.60 V ( f 2 g g 2 f ) d V = S ( f g n g f n ) d A ,
3: 22.4 Periods, Poles, and Zeros
This half-period will be plus or minus a member of the triple K , i K , K + i K ; the other two members of this triple are quarter periods of p q ( z , k ) . …
4: 10.43 Integrals
For infinite integrals of triple products of modified and unmodified Bessel functions, see Gervois and Navelet (1984, 1985a, 1985b, 1986a, 1986b). …
5: 7.13 Zeros
At z = 0 , C ( z ) has a simple zero and S ( z ) has a triple zero. …
6: 10.22 Integrals
Triple Products
7: Bibliography R
  • W. H. Reid (1995) Integral representations for products of Airy functions. Z. Angew. Math. Phys. 46 (2), pp. 159–170.
  • W. H. Reid (1997a) Integral representations for products of Airy functions. II. Cubic products. Z. Angew. Math. Phys. 48 (4), pp. 646–655.
  • W. H. Reid (1997b) Integral representations for products of Airy functions. III. Quartic products. Z. Angew. Math. Phys. 48 (4), pp. 656–664.
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • G. B. Rybicki (1989) Dawson’s integral and the sampling theorem. Computers in Physics 3 (2), pp. 85–87.