About the Project

trigonometric%20arguments

AdvancedHelp

(0.002 seconds)

9 matching pages

1: Bibliography F
β–Ί
  • P. Falloon (2001) Theory and Computation of Spheroidal Harmonics with General Arguments. Master’s Thesis, The University of Western Australia, Department of Physics.
  • β–Ί
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • β–Ί
  • L. Fox (1960) Tables of Weber Parabolic Cylinder Functions and Other Functions for Large Arguments. National Physical Laboratory Mathematical Tables, Vol. 4. Department of Scientific and Industrial Research, Her Majesty’s Stationery Office, London.
  • β–Ί
  • C. L. Frenzen (1992) Error bounds for the asymptotic expansion of the ratio of two gamma functions with complex argument. SIAM J. Math. Anal. 23 (2), pp. 505–511.
  • β–Ί
  • T. Fukushima (2010) Fast computation of incomplete elliptic integral of first kind by half argument transformation. Numer. Math. 116 (4), pp. 687–719.
  • 2: Bibliography M
    β–Ί
  • L. C. Maximon (2003) The dilogarithm function for complex argument. Proc. Roy. Soc. London Ser. A 459, pp. 2807–2819.
  • β–Ί
  • Fr. Mechel (1966) Calculation of the modified Bessel functions of the second kind with complex argument. Math. Comp. 20 (95), pp. 407–412.
  • β–Ί
  • C. S. Meijer (1932) Über die asymptotische Entwicklung von 0 i ⁒ ( arg ⁑ w ΞΌ ) e Ξ½ ⁒ z w ⁒ sinh ⁑ z ⁒ 𝑑 z , ( Ο€ 2 < ΞΌ < Ο€ 2 ) für große Werte von | w | und | Ξ½ | . I, II. Proc. Akad. Wet. Amsterdam 35, pp. 1170–1180, 1291–1303 (German).
  • β–Ί
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • β–Ί
  • R. Morris (1979) The dilogarithm function of a real argument. Math. Comp. 33 (146), pp. 778–787.
  • 3: 20.10 Integrals
    β–Ί
    20.10.4 0 e s ⁒ t ⁒ ΞΈ 1 ⁑ ( Ξ² ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = 0 e s ⁒ t ⁒ ΞΈ 2 ⁑ ( ( 1 + Ξ² ) ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = β„“ s ⁒ sinh ⁑ ( Ξ² ⁒ s ) ⁒ sech ⁑ ( β„“ ⁒ s ) ,
    β–Ί
    20.10.5 0 e s ⁒ t ⁒ ΞΈ 3 ⁑ ( ( 1 + Ξ² ) ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = 0 e s ⁒ t ⁒ ΞΈ 4 ⁑ ( Ξ² ⁒ Ο€ 2 ⁒ β„“ | i ⁒ Ο€ ⁒ t β„“ 2 ) ⁒ d t = β„“ s ⁒ cosh ⁑ ( Ξ² ⁒ s ) ⁒ csch ⁑ ( β„“ ⁒ s ) .
    β–ΊFor corresponding results for argument derivatives of the theta functions see Erdélyi et al. (1954a, pp. 224–225) or Oberhettinger and Badii (1973, p. 193). …
    4: 25.6 Integer Arguments
    §25.6 Integer Arguments
    β–Ί
    §25.6(i) Function Values
    β–Ί
    25.6.3 ΢ ⁑ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    β–Ί
    25.6.6 ΞΆ ⁑ ( 2 ⁒ k + 1 ) = ( 1 ) k + 1 ⁒ ( 2 ⁒ Ο€ ) 2 ⁒ k + 1 2 ⁒ ( 2 ⁒ k + 1 ) ! ⁒ 0 1 B 2 ⁒ k + 1 ⁑ ( t ) ⁒ cot ⁑ ( Ο€ ⁒ t ) ⁒ d t , k = 1 , 2 , 3 , .
    β–Ί
    §25.6(ii) Derivative Values
    5: Bibliography K
    β–Ί
  • R. B. Kearfott, M. Dawande, K. Du, and C. Hu (1994) Algorithm 737: INTLIB: A portable Fortran 77 interval standard-function library. ACM Trans. Math. Software 20 (4), pp. 447–459.
  • β–Ί
  • M. K. Kerimov (1980) Methods of computing the Riemann zeta-function and some generalizations of it. USSR Comput. Math. and Math. Phys. 20 (6), pp. 212–230.
  • β–Ί
  • M. Kodama (2008) Algorithm 877: A subroutine package for cylindrical functions of complex order and nonnegative argument. ACM Trans. Math. Software 34 (4), pp. Art. 22, 21.
  • β–Ί
  • M. Kodama (2011) Algorithm 912: a module for calculating cylindrical functions of complex order and complex argument. ACM Trans. Math. Software 37 (4), pp. Art. 47, 25.
  • β–Ί
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • 6: Software Index
    7: 9.7 Asymptotic Expansions
    β–Ί
    9.7.3 Ο‡ ⁑ ( x ) Ο€ 1 / 2 ⁒ Ξ“ ⁑ ( 1 2 ⁒ x + 1 ) / Ξ“ ⁑ ( 1 2 ⁒ x + 1 2 ) .
    β–Ί
    9.7.4 Ο‡ ⁑ ( x ) ( 1 2 ⁒ Ο€ ⁒ x ) 1 / 2 .
    β–ΊNumerical values of Ο‡ ⁑ ( n ) are given in Table 9.7.1 for n = 1 ⁒ ( 1 ) ⁒ 20 to 2D. … β–Ί
    9.7.9 Ai ⁑ ( z ) 1 Ο€ ⁒ z 1 / 4 ⁒ ( cos ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) ⁒ k = 0 ( 1 ) k ⁒ u 2 ⁒ k ΞΆ 2 ⁒ k + sin ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) ⁒ k = 0 ( 1 ) k ⁒ u 2 ⁒ k + 1 ΞΆ 2 ⁒ k + 1 ) , | ph ⁑ z | 2 3 ⁒ Ο€ Ξ΄ ,
    β–Ί
    9.7.10 Ai ⁑ ( z ) z 1 / 4 Ο€ ⁒ ( sin ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) ⁒ k = 0 ( 1 ) k ⁒ v 2 ⁒ k ΞΆ 2 ⁒ k cos ⁑ ( ΞΆ 1 4 ⁒ Ο€ ) ⁒ k = 0 ( 1 ) k ⁒ v 2 ⁒ k + 1 ΞΆ 2 ⁒ k + 1 ) , | ph ⁑ z | 2 3 ⁒ Ο€ Ξ΄ ,
    8: Errata
    β–Ί
  • Equation (23.12.2)
    23.12.2 ΞΆ ⁑ ( z ) = Ο€ 2 4 ⁒ Ο‰ 1 2 ⁒ ( z 3 + 2 ⁒ Ο‰ 1 Ο€ ⁒ cot ⁑ ( Ο€ ⁒ z 2 ⁒ Ο‰ 1 ) 8 ⁒ ( z Ο‰ 1 Ο€ ⁒ sin ⁑ ( Ο€ ⁒ z Ο‰ 1 ) ) ⁒ q 2 + O ⁑ ( q 4 ) )

    Originally, the factor of 2 was missing from the denominator of the argument of the cot function.

    Reported by Blagoje Oblak on 2019-05-27

  • β–Ί
  • Equations (33.11.2)–(33.11.7)

    The arguments of some of the functions in (33.11.2)–(33.11.7) were included to improve clarity of the presentation.

  • β–Ί
  • Equation (22.19.2)
    22.19.2 sin ⁑ ( 1 2 ⁒ θ ⁒ ( t ) ) = sin ⁑ ( 1 2 ⁒ α ) ⁒ sn ⁑ ( t + K , sin ⁑ ( 1 2 ⁒ α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • β–Ί
  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • β–Ί
  • References

    Bibliographic citations were added in §§1.13(v), 10.14, 10.21(ii), 18.15(v), 18.32, 30.16(iii), 32.13(ii), and as general references in Chapters 19, 20, 22, and 23.

  • 9: Bibliography R
    β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • G. F. Remenets (1973) Computation of Hankel (Bessel) functions of complex index and argument by numerical integration of a Schläfli contour integral. Ε½. Vyčisl. Mat. i Mat. Fiz. 13, pp. 1415–1424, 1636.
  • β–Ί
  • S. R. Rengarajan and J. E. Lewis (1980) Mathieu functions of integral orders and real arguments. IEEE Trans. Microwave Theory Tech. 28 (3), pp. 276–277.
  • β–Ί
  • D. St. P. Richards (2004) Total positivity properties of generalized hypergeometric functions of matrix argument. J. Statist. Phys. 116 (1-4), pp. 907–922.
  • β–Ί
  • P. A. Rosenberg and L. P. McNamee (1976) Precision controlled trigonometric algorithms. Appl. Math. Comput. 2 (4), pp. 335–352.