# trigonometric form

(0.003 seconds)

## 1—10 of 112 matching pages

##### 2: 29.2 Differential Equations
29.2.4 $(1-k^{2}{\cos}^{2}\phi)\frac{{\mathrm{d}}^{2}w}{{\mathrm{d}\phi}^{2}}+k^{2}% \cos\phi\sin\phi\frac{\mathrm{d}w}{\mathrm{d}\phi}+(h-\nu(\nu+1)k^{2}{\cos}^{2% }\phi)w=0,$
##### 3: 4.23 Inverse Trigonometric Functions
###### §4.23(iv) Logarithmic Forms
Care needs to be taken on the cuts, for example, if $0 then $1/(x+i0)=(1/x)-i0$. …
##### 6: 6.7 Integral Representations
6.7.10 $\mathrm{Ein}\left(z\right)-\mathrm{Cin}\left(z\right)=\int_{0}^{\pi/2}e^{-z% \cos t}\sin\left(z\sin t\right)\mathrm{d}t,$
6.7.11 $\int_{0}^{1}\frac{(1-e^{-at})\cos\left(bt\right)}{t}\mathrm{d}t=\Re\mathrm{Ein% }\left(a+ib\right)-\mathrm{Cin}\left(b\right),$ $a,b\in\mathbb{R}$.
##### 7: 6.2 Definitions and Interrelations
6.2.10 $\mathrm{si}\left(z\right)=-\int_{z}^{\infty}\frac{\sin t}{t}\mathrm{d}t=% \mathrm{Si}\left(z\right)-\tfrac{1}{2}\pi.$
##### 8: 28.2 Definitions and Basic Properties
With $\zeta={\sin}^{2}z$ we obtain the algebraic form of Mathieu’s equation …With $\zeta=\cos z$ we obtain another algebraic form: …
##### 9: 22.5 Special Values
###### §22.5(ii) Limiting Values of $k$
In these cases the elliptic functions degenerate into elementary trigonometric and hyperbolic functions, respectively. …
##### 10: 4.45 Methods of Computation
The inverses $\operatorname{arcsinh}$, $\operatorname{arccosh}$, and $\operatorname{arctanh}$ can be computed from the logarithmic forms given in §4.37(iv), with real arguments. … The trigonometric functions may be computed from the definitions (4.14.1)–(4.14.7), and their inverses from the logarithmic forms in §4.23(iv), followed by (4.23.7)–(4.23.9). …