About the Project

triconfluent%20Heun%20equation

AdvancedHelp

(0.002 seconds)

11—20 of 502 matching pages

11: 20 Theta Functions
Chapter 20 Theta Functions
12: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
13: 28 Mathieu Functions and Hill’s Equation
Chapter 28 Mathieu Functions and Hill’s Equation
14: 31.4 Solutions Analytic at Two Singularities: Heun Functions
§31.4 Solutions Analytic at Two Singularities: Heun Functions
To emphasize this property this set of functions is denoted by … The eigenvalues q m satisfy the continued-fraction equationThe set q m depends on the choice of s 1 and s 2 . The solutions (31.4.3) are called the Heun functions. …
15: 31.6 Path-Multiplicative Solutions
§31.6 Path-Multiplicative Solutions
A further extension of the notation (31.4.1) and (31.4.3) is given by
16: 8 Incomplete Gamma and Related
Functions
17: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 18: 23 Weierstrass Elliptic and Modular
    Functions
    19: 31.3 Basic Solutions
    §31.3(i) Fuchs–Frobenius Solutions at z = 0
    H ( a , q ; α , β , γ , δ ; z ) denotes the solution of (31.2.1) that corresponds to the exponent 0 at z = 0 and assumes the value 1 there. …
    §31.3(ii) Fuchs–Frobenius Solutions at Other Singularities
    §31.3(iii) Equivalent Expressions
    For example, H ( a , q ; α , β , γ , δ ; z ) is equal to …
    20: 31.17 Physical Applications
    §31.17 Physical Applications
    §31.17(i) Addition of Three Quantum Spins
    §31.17(ii) Other Applications
    For applications of Heun’s equation and functions in astrophysics see Debosscher (1998) where different spectral problems for Heun’s equation are also considered. …