About the Project

triangular%20matrices

AdvancedHelp

(0.002 seconds)

1—10 of 134 matching pages

1: 13.27 Mathematical Applications
§13.27 Mathematical Applications
ā–ŗConfluent hypergeometric functions are connected with representations of the group of third-order triangular matrices. …Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. … …
2: 3.2 Linear Algebra
ā–ŗThis yields a lower triangular matrix of the form …If we denote by š” the upper triangular matrix comprising the elements u j ā¢ k in (3.2.3), then we have the factorization, or triangular decomposition, … ā–ŗWe solve the system š€ ā¢ š›æ š± = š« for š›æ š± , taking advantage of the existing triangular decomposition of š€ to obtain an improved solution š± + š›æ š± . … ā–ŗTridiagonal matrices are ones in which the only nonzero elements occur on the main diagonal and two adjacent diagonals. … ā–ŗThe p -norm of a matrix š€ = [ a j ā¢ k ] is …
3: 1.3 Determinants, Linear Operators, and Spectral Expansions
ā–ŗ
Determinants of Upper/Lower Triangular and Diagonal Matrices
ā–ŗThe determinant of an upper or lower triangular, or diagonal, square matrix š€ is the product of the diagonal elements det ( š€ ) = i = 1 n a i ā¢ i . … ā–ŗ
§1.3(iv) Matrices as Linear Operators
ā–ŗReal symmetric ( š€ = š€ T ) and Hermitian ( š€ = š€ H ) matrices are self-adjoint operators on š„ n . … ā–ŗFor Hermitian matrices š’ is unitary, and for real symmetric matrices š’ is an orthogonal transformation. …
4: 1.2 Elementary Algebra
ā–ŗ
Multiplication of Matrices
ā–ŗ
§1.2(vi) Square Matrices
ā–ŗ š€ is an upper or lower triangular matrix if all a i ā¢ j vanish for i > j or i < j , respectively. ā–ŗEquation (3.2.7) displays a tridiagonal matrix in index form; (3.2.4) does the same for a lower triangular matrix. … ā–ŗ
Norms of Square Matrices
5: 3.4 Differentiation
ā–ŗ
B 2 5 = 1 120 ā¢ ( 6 10 ā¢ t 15 ā¢ t 2 + 20 ā¢ t 3 5 ā¢ t 4 ) ,
ā–ŗ
B 3 6 = 1 720 ā¢ ( 12 8 ā¢ t 45 ā¢ t 2 + 20 ā¢ t 3 + 15 ā¢ t 4 6 ā¢ t 5 ) ,
ā–ŗ
B 2 6 = 1 60 ā¢ ( 9 9 ā¢ t 30 ā¢ t 2 + 20 ā¢ t 3 + 5 ā¢ t 4 3 ā¢ t 5 ) ,
ā–ŗ
B 2 6 = 1 60 ā¢ ( 9 + 9 ā¢ t 30 ā¢ t 2 20 ā¢ t 3 + 5 ā¢ t 4 + 3 ā¢ t 5 ) ,
ā–ŗFor additional formulas involving values of 2 u and 4 u on square, triangular, and cubic grids, see Collatz (1960, Table VI, pp. 542–546). …
6: 20 Theta Functions
Chapter 20 Theta Functions
7: 3.11 Approximation Techniques
ā–ŗStarting with the first column [ n / 0 ] f , n = 0 , 1 , 2 , , and initializing the preceding column by [ n / 1 ] f = , n = 1 , 2 , , we can compute the lower triangular part of the table via (3.11.25). Similarly, the upper triangular part follows from the first row [ 0 / n ] f , n = 0 , 1 , 2 , , by initializing [ 1 / n ] f = 0 , n = 1 , 2 , . … ā–ŗIf n = 2 m , then š›€ can be factored into m matrices, the rows of which contain only a few nonzero entries and the nonzero entries are equal apart from signs. …
8: 9.19 Approximations
ā–ŗ
  • Corless et al. (1992) describe a method of approximation based on subdividing ā„‚ into a triangular mesh, with values of Ai ā” ( z ) , Ai ā” ( z ) stored at the nodes. Ai ā” ( z ) and Ai ā” ( z ) are then computed from Taylor-series expansions centered at one of the nearest nodes. The Taylor coefficients are generated by recursion, starting from the stored values of Ai ā” ( z ) , Ai ā” ( z ) at the node. Similarly for Bi ā” ( z ) , Bi ā” ( z ) .

  • 9: Bibliography F
    ā–ŗ
  • FDLIBM (free C library)
  • ā–ŗ
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • ā–ŗ
  • P. J. Forrester and N. S. Witte (2001) Application of the Ļ„ -function theory of Painlevé equations to random matrices: PIV, PII and the GUE. Comm. Math. Phys. 219 (2), pp. 357–398.
  • ā–ŗ
  • P. J. Forrester and N. S. Witte (2002) Application of the Ļ„ -function theory of Painlevé equations to random matrices: P V , P III , the LUE, JUE, and CUE. Comm. Pure Appl. Math. 55 (6), pp. 679–727.
  • ā–ŗ
  • P. J. Forrester and N. S. Witte (2004) Application of the Ļ„ -function theory of Painlevé equations to random matrices: P VI , the JUE, CyUE, cJUE and scaled limits. Nagoya Math. J. 174, pp. 29–114.
  • 10: Bibliography I
    ā–ŗ
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ā¢ ( z ) i ā¢ J 1 ā¢ ( z ) and of Bessel functions J m ā¢ ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • ā–ŗ
  • K. Inkeri (1959) The real roots of Bernoulli polynomials. Ann. Univ. Turku. Ser. A I 37, pp. 1–20.