# tables of zeros

(0.003 seconds)

## 11—20 of 58 matching pages

##### 11: 15.13 Zeros
A small table of zeros is given in Conde and Kalla (1981) and Segura (2008).
##### 12: 8.13 Zeros
The values of the first six double zeros are given to 5D in Table 8.13.1. …
##### 13: 9.17 Methods of Computation
###### §9.17(v) Zeros
Zeros of the Airy functions, and their derivatives, can be computed to high precision via Newton’s rule (§3.8(ii)) or Halley’s rule (§3.8(v)), using values supplied by the asymptotic expansions of §9.9(iv) as initial approximations. This method was used in the computation of the tables in §9.9(v). See also Fabijonas et al. (2004). For the computation of the zeros of the Scorer functions and their derivatives see Gil et al. (2003c).
##### 14: 22.4 Periods, Poles, and Zeros
Table 22.4.2 displays the periods and zeros of the functions in the $z$-plane in a similar manner to Table 22.4.1. …
##### 15: Bibliography F
• H. E. Fettis and J. C. Caslin (1973) Table errata; Complex zeros of Fresnel integrals. Math. Comp. 27 (121), pp. 219.
• ##### 16: 9.12 Scorer Functions
For the above properties and further results, including the distribution of complex zeros, asymptotic approximations for the numerically large real or complex zeros, and numerical tables see Gil et al. (2003c). …
##### 17: Bibliography B
• R. F. Barrett (1964) Tables of modified Struve functions of orders zero and unity.
• British Association for the Advancement of Science (1937) Bessel Functions. Part I: Functions of Orders Zero and Unity. Mathematical Tables, Volume 6, Cambridge University Press, Cambridge.
• ##### 18: 10.70 Zeros
In the case $\nu=0$, numerical tabulations (Abramowitz and Stegun (1964, Table 9.12)) indicate that each of (10.70.2) corresponds to the $m$th zero of the function on the left-hand side. …
##### 19: Bibliography O
• F. W. J. Olver (Ed.) (1960) Bessel Functions. Part III: Zeros and Associated Values. Royal Society Mathematical Tables, Volume 7, Cambridge University Press, Cambridge-New York.
• ##### 20: 18.16 Zeros
In view of the reflection formula, given in Table 18.6.1, we may consider just the positive zeros $x_{n,m}$, $m=1,2,\dots,\left\lfloor\tfrac{1}{2}n\right\rfloor$. …