# table

(0.001 seconds)

## 1—10 of 170 matching pages

##### 2: 4.46 Tables
###### §4.46 Tables
Extensive numerical tables of all the elementary functions for real values of their arguments appear in Abramowitz and Stegun (1964, Chapter 4). This handbook also includes lists of references for earlier tables, as do Fletcher et al. (1962) and Lebedev and Fedorova (1960). …
##### 3: 26.21 Tables
###### §26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients $\genfrac{(}{)}{0.0pt}{}{m}{n}$ for $m$ up to 50 and $n$ up to 25; extends Table 26.4.1 to $n=10$; tabulates Stirling numbers of the first and second kinds, $s\left(n,k\right)$ and $S\left(n,k\right)$, for $n$ up to 25 and $k$ up to $n$; tabulates partitions $p\left(n\right)$ and partitions into distinct parts $p\left(\mathcal{D},n\right)$ for $n$ up to 500. Andrews (1976) contains tables of the number of unrestricted partitions, partitions into odd parts, partitions into parts $\not\equiv\pm 2\pmod{5}$, partitions into parts $\not\equiv\pm 1\pmod{5}$, and unrestricted plane partitions up to 100. It also contains a table of Gaussian polynomials up to $\genfrac{[}{]}{0.0pt}{}{12}{6}_{q}$. Goldberg et al. (1976) contains tables of binomial coefficients to $n=100$ and Stirling numbers to $n=40$.
##### 4: 34.14 Tables
###### §34.14 Tables
Tables of exact values of the squares of the $\mathit{3j}$ and $\mathit{6j}$ symbols in which all parameters are $\leq 8$ are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of $\mathit{3j},\mathit{6j}$, and $\mathit{9j}$ symbols on pp. … Biedenharn and Louck (1981) give tables of algebraic expressions for Clebsch–Gordan coefficients and $\mathit{6j}$ symbols, together with a bibliography of tables produced prior to 1975. … 270–289; similar tables for the $\mathit{6j}$ symbols are given on pp. …Earlier tables are listed on p. …
##### 5: 25.19 Tables
###### §25.19 Tables
• Abramowitz and Stegun (1964) tabulates: $\zeta\left(n\right)$, $n=2,3,4,\dots$, 20D (p. 811); $\operatorname{Li}_{2}\left(1-x\right)$, $x=0(.01)0.5$, 9D (p. 1005); $f(\theta)$, $\theta=15^{\circ}(1^{\circ})30^{\circ}(2^{\circ})90^{\circ}(5^{\circ})180^{\circ}$, $f(\theta)+\theta\ln\theta$, $\theta=0(1^{\circ})15^{\circ}$, 6D (p. 1006). Here $f(\theta)$ denotes Clausen’s integral, given by the right-hand side of (25.12.9).

• Morris (1979) tabulates $\operatorname{Li}_{2}\left(x\right)$25.12(i)) for $\pm x=0.02(.02)1(.1)6$ to 30D.

• Cloutman (1989) tabulates $\Gamma\left(s+1\right)F_{s}(x)$, where $F_{s}(x)$ is the Fermi–Dirac integral (25.12.14), for $s=-\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{5}{2}$, $x=-5(.05)25$, to 12S.

• Fletcher et al. (1962, §22.1) lists many sources for earlier tables of $\zeta\left(s\right)$ for both real and complex $s$. §22.133 gives sources for numerical values of coefficients in the Riemann–Siegel formula, §22.15 describes tables of values of $\zeta\left(s,a\right)$, and §22.17 lists tables for some Dirichlet $L$-functions for real characters. For tables of dilogarithms, polylogarithms, and Clausen’s integral see §§22.84–22.858.

• ##### 6: 18.41 Tables
###### §18.41 Tables
For $P_{n}\left(x\right)$ ($=\mathsf{P}_{n}\left(x\right)$) see §14.33. … See also Abramowitz and Stegun (1964, Tables 25.4, 25.9, and 25.10).
###### §18.41(iii) Other Tables
For tables prior to 1961 see Fletcher et al. (1962) and Lebedev and Fedorova (1960).
##### 7: 27.21 Tables
###### §27.21 Tables
Table 24. 7 of Abramowitz and Stegun (1964) also lists the factorizations in Glaisher’s Table I(a); Table 24. … Lehmer (1941) gives a comprehensive account of tables in the theory of numbers, including virtually every table published from 1918 to 1941. … No sequel to Lehmer (1941) exists to date, but many tables of functions of number theory are included in Unpublished Mathematical Tables (1944). …
##### 8: 35.11 Tables
###### §35.11 Tables
Tables of zonal polynomials are given in James (1964) for $|\kappa|\leq 6$, Parkhurst and James (1974) for $|\kappa|\leq 12$, and Muirhead (1982, p. 238) for $|\kappa|\leq 5$. Each table expresses the zonal polynomials as linear combinations of monomial symmetric functions.
##### 9: 29.21 Tables
###### §29.21 Tables
• Ince (1940a) tabulates the eigenvalues $a^{m}_{\nu}\left(k^{2}\right)$, $b^{m+1}_{\nu}\left(k^{2}\right)$ (with $a^{2m+1}_{\nu}$ and $b^{2m+1}_{\nu}$ interchanged) for $k^{2}=0.1,0.5,0.9$, $\nu=-\frac{1}{2},0(1)25$, and $m=0,1,2,3$. Precision is 4D.

• Arscott and Khabaza (1962) tabulates the coefficients of the polynomials $P$ in Table 29.12.1 (normalized so that the numerically largest coefficient is unity, i.e. monic polynomials), and the corresponding eigenvalues $h$ for $k^{2}=0.1(.1)0.9$, $n=1(1)30$. Equations from §29.6 can be used to transform to the normalization adopted in this chapter. Precision is 6S.

• ##### 10: 24.20 Tables
###### §24.20 Tables
For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).